Therapeutic Angiogenesis by Intramyocardial Injection of pCK-VEGF165 in Pigs

돼지에서 pCK-VEGF165의 심근내 주입에 의한 치료적 혈관조성

  • Choi Jae-Sung (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Han Woong (ViroMed Limitted) ;
  • Kim Dong Sik (ViroMed Limitted) ;
  • Park Jin Sik (Department of Internal Medicine, Seoul National University Hospital) ;
  • Lee Jong Jin (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Lee Dong Soo (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Kim Ki-Bong (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital)
  • Published : 2005.05.01

Abstract

Background: Gene therapy is a new and promising option for the treatment of severe myocardial ischemia by therapeutic angiogenesis. The goal of this study was to elucidate the efficacy of therapeutic angiogenesis by using VEGF165 in large animals. Material and Method: Twenty-one pigs that underwent ligation of the distal left anterior descending coronary artery were randomly allocated to one of two treatments: intramyocardial injection of pCK-VEGF (VEGF) or intramyocardial injection of pCK-Null (Control). Injections were administered 30 days after ligation. Seven pigs died during the trial, but eight pigs from VEGF and six from Control survived. Echo-cardiography was performed on day 0 (preoperative) and on days 30 and 60 following coronary ligation. Gated myocardial single photon emission computed tomography imaging (SPECT) with $^{99m}Tc-labeled$ sestamibi was performed on days 30 and 60. Myocardial perfusion was assessed from the uptake of $^{99m}Tc-labeled$ sestamibi at rest. Global and regional myocardial function as well as post-infarction left ventricular remodeling were assessed from segmental wall thickening; left ventricular ejection fraction (EF); end systolic volume (ESV); and end diastolic volume (EDV) using gated SPECT and echocardiography. Myocardium of the ischemic border zone into which pCK plasmid vector had been injected was also sampled to assess micro-capillary density. Result: Micro-capillary density was significantly higher in the VEGF than in Control ($386\pm110/mm^{2}\;vs.\;291\pm127/mm^{2};\;p<0.001$). Segmental perfusion increased significantly from day 30 to day 60 after intramyocardial injection of plasmid vector in VEGF ($48.4\pm15.2\%\;vs.\;53.8\pm19.6\%;\;p<0.001$), while no significant change was observed in the Control ($45.1\pm17.0\%\;vs.\;43.4\pm17.7\%;\;p=0.186$). This resulted in a significant difference in the percentage changes between the two groups ($11.4\pm27.0\%\;increase\;vs.\;2.7\pm19.0\%\;decrease;\;p=0.003$). Segmental wall thickening increased significantly from day 30 to day 60 in both groups; the increments did not differ between groups. ESV measured using echocardiography increased significantly from day 0 to day 30 in VEGF ($22.9\pm9.9\;mL\;vs.\;32.3\pm9.1\;mL;\; p=0.006$) and in Control ($26.3\pm12.0\;mL\;vs.\;36.8\pm9.7\;mL;\;p=0.046$). EF decreased significantly in VEGF ($52.0\pm7.7\%\;vs.\;46.5\pm7.4\%;\;p=0.004$) and in Control ($48.2\pm9.2\%\;vs.\;41.6\pm10.0\%;\;p=0.028$). There was no significant change in EDV. The interval changes (days $30\~60$) of EF, ESV, and EDV did not differ significantly between groups both by gated SPECT and by echocardiography. Conclusion: Intramyocardial injection of pCK-VEGF165 induced therapeutic angiogenesis and improved myocardial perfusion. However, post-infarction remodeling and global myocardial function were not improved.

배경: 유전자 치료에 의한 치료적 혈관조성은 허혈성 심질환의 새로운 치료전략의 하나로 최근 많은 연구가 진행되고 있다. 본 연구의 목적은 대동물에서 pCK 플라스미드 벡터에 혈관내피성장인자(vascular endothelial growth factor isoform 165: VEGF165) 유전자를 삽입한 pCK-VEGF를 이용한 치료적 혈관조성의 효용성을 증명하는 것이다. 대상 및 방법: 총 21 마리의 돼지를 이용하여 좌전하행지동맥의 원위부를 결찰하여 심근경색 모델을 만든 후, 4주 후에 VEGF 유전자를 삽입한 플라스미드를 심근내에 주입하거나(VEGF군), 유전자 없이 플라스미드 만을 주입하였다(대조군). 실험 대상 동물군을 맹검하에 무작위로 VEGF군 및 대조군으로 나누어 실험을 진행하였는데, 7마리는 실험 도중 사망하였으며 결과적으로 VEGF군은 8마리, 대조군은 6마리가 최종분석에 이용되었다. 좌전하행지동맥 결찰 후 30일째에 심근 SPECT와 심장초음파검사를 시행하고 심근내에 플라스미드를 주입하였으며, 이로부터 30일째에 심근 SPECT와 심장초음파검사를 다시 시행하였다. 허혈부위의 심근관류의 변화는 심근 SPECT상의 $^{99m}Tc-MIBI$의 섭취 정도로 비교하였으며, 국소 및 전체 심근기능 및 심실리모델링 등은 심장초음파 또는 게이트SPECT 검사상의 수축시 심실벽비후화, 좌심실구출률(EF), 수축기말용적(ESV), 이완기말용적(EDV) 등으로 비교하였다. 혈관조성의 정도는 조직검사상의 미세혈관의 밀도를 측정하여 비교하였다. 결과: 미세혈관의 밀도는 VEGF군에서 유의하게 더 높았으며($386\pm110/mm^{2}\;vs.\;291\pm127/mm^{2},\;p<0.001$), 분절의 관류 정도도 VEGF군에서는 관상동맥 결찰 60일째가 30일째에 비해 더 증가한 반면(플라스미드 주입 전, 후, $48.4\pm15.2\%\;vs.\;53.8\pm19.6\%,\;p<0.001$) 대조군에서는 유의한 변화가 없었고(플라스미드 주입 전, 후, $45.1\pm17.0\%\;vs.\;43.4\pm17.7\%,\;p=0.186$), 그 변화량도 두 군간에 유의한 차이를 보였다($11.4\pm27.0\%$ 증가 vs $2.7\pm19.0\%$ 감소, p=0.003). 수축시의 심실벽비후화는 양 군 모두에서 플라스미드 주입 후 유의하게 증가하였으나 증가한 정도는 두 군간에 차이가 없었다. 심장초음파검사상 ESV은 양 군 모두에서 수술 전에 비해 관상동맥 결찰 후 유의하게 증가하였고 (VEGF군, $22.9\pm9.9\;mL\;vs.\;32.3\pm9.1\;mL,\;p=0.006;$ 대조군, $26.3\pm12.0\;mL\;vs.\;36.8\pm9.7\;mL,\;p=0.046$), EF은 유의하게 감소하였으며(VEGF군, $52.0\pm7.9\%\;vs\;46.5\pm7.4\%$, p=0.004; 대조군, $48.2\pm9.2\%\;vs\;41.6\pm10.0\%$, p=0.028), EDV은 양 군 모두에서 유의한 변화가 없었다. 플라스미드 주입 전과 후의 비교에서는 양 군 모두에서 심장초음파 및 게이트 SPECT검사상의 EF, ESV, EDV 값의 유의한 차이가 없었다. 결론: VEGF165 유전자를 삽입한 플라스미드의 심근내 주입 후 허혈성 생존 심근 부위에 혈관조성이 일어나고 심근관류가 유의하게 증가하였다. 그러나 심근 기능이나 좌심실의 리모델링 경과엔 유의한 차이가 없었다.

Keywords

References

  1. Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis-how many patients might be eligible? Am J Cardiol 1999;84:598-600 https://doi.org/10.1016/S0002-9149(99)00387-2
  2. Jones EL, Craver JM, Guyton RA, Bone DK, Hatcher CR, Jr, Riechwald N. Importance of complete revascularization in performance of the coronary bypass operation. Am J Cardiol 1983;51:7-12 https://doi.org/10.1016/S0002-9149(83)80003-4
  3. Scott R, Blackstone EH, McCarthy PM, et al. Isolated by-pass grafting of the left internal thoracic artery to the left anterior descending coronary artery: late consequences of incomplete revascularization. J Thorac Cardiovasc Surg 2000; 120:173-84 https://doi.org/10.1067/mtc.2000.107280
  4. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis: a single intra-atrial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J Clin Invest 1994;93:662-70 https://doi.org/10.1172/JCI117018
  5. Isner JM, Walsh K, Symes J, et al. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995;91:2687-92 https://doi.org/10.1161/01.CIR.91.11.2687
  6. Affleck DG, Bull DA, Bailey SH, et al. PDGF(BB) increases myocardial production of VEGF: shift in VEGF mRNA splice variants after direct injection of bFGF, PDGF(BB), and PDGF(AB). J Surg Res 2002;107:203-9 https://doi.org/10.1006/jsre.2002.6510
  7. Ueno H, Li JJ, Masuda S, Qi Z, Yamamoto H, Takeshita A. Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 1997;17:2453-60 https://doi.org/10.1161/01.ATV.17.11.2453
  8. Hayashi S, Morishita R, Nakamura S, et al. Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: downregulation of HGF in response to hypoxia in vascular cells. Circulation 1999;100 (suppl 2):301-8
  9. Ueda H, Sawa Y, Matsumoto K, et al. Gene transfection of hepatocyte growth factor attenuates reperfusion injury in the heart. Ann Thorac Surg 1999;67:1726-31 https://doi.org/10.1016/S0003-4975(99)00279-9
  10. Siddiqui AJ, Blomberg P, Wardell E, et al. Combination of angiopoietin-1 and vascular endothelial growth factor gene therapy enhances arteriogenesis in the ischemic myocardium. Biochem Biophys Res Commun 2003;24:1002-9
  11. Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM. Expression of VEGF and angiopoietins-1 and -2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 2003;285:352-8 https://doi.org/10.1152/ajpheart.00621.2002
  12. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992;13:18-32
  13. Schainfeld R, Blair R, Manor O, Razvi S, Symes JF. Treatment of acute limb ischemia by intramuscular injection of vascular endothelial growth factor gene. Circulation 1997;96(suppl 2):382-8
  14. Isner JM, Baumgartner I, Rauh G. Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 1998;28:964-73 https://doi.org/10.1016/S0741-5214(98)70022-9
  15. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998;97:1114-23 https://doi.org/10.1161/01.CIR.97.12.1114
  16. Tsurumi Y, Kearney M, Chen D, et al. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001;58:761-8 https://doi.org/10.1001/archneur.58.5.761
  17. Mohler ER 3rd, Rajagopalan S, Olin JW, et al. Adenoviral- mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med 2003;8:9-13 https://doi.org/10.1191/1358863x03vm460oa
  18. Shyu KG, Chang H, Wang BW, Kuan P. Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med 2003;114:85-92 https://doi.org/10.1016/S0002-9343(02)01392-X
  19. Fortuin FD, Vale P, Losordo DW, et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol 2003;92:436-9 https://doi.org/10.1016/S0002-9149(03)00661-1
  20. Hendel RC, Henry TD, Rocha-Singh K, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 2000;101:118-21 https://doi.org/10.1161/01.CIR.101.2.118
  21. Henry TD, Rocha-Singh K, Isner JM, et al. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J 2001;142:872-80 https://doi.org/10.1067/mhj.2001.118471
  22. Losordo DW, Vale PR, Symes JF, et al. Gene therapy with vascular endothelial angiogenesis: initial clinical results with direct myocardial injection fo phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800-4 https://doi.org/10.1161/01.CIR.98.25.2800
  23. Rosengart TK, Lee LY, Patel SR, et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468-74 https://doi.org/10.1161/01.CIR.100.5.468
  24. Symes JF, Losordo DW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999;68:830-7 https://doi.org/10.1016/S0003-4975(99)00807-3
  25. Lee YJ, Park EJ, Yu SS, Kim DK, Kim S. Improved excpression of vascular endothelial growth factor by naked DNA in mouse skeletal muscles: implication for gene therapy of ischemic diseases. Biochem Biophys Res Commun 2000;272:230-5 https://doi.org/10.1006/bbrc.2000.2758
  26. Tischer E, Mitchell R, Hartmann T, et al. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;266:11947-54
  27. Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9:694-701 https://doi.org/10.1038/nm0603-694
  28. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 1992;90:626-30 https://doi.org/10.1172/JCI115902
  29. Lee LY, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 2000;69:14-24 https://doi.org/10.1016/S0003-4975(99)01102-9
  30. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4-25 https://doi.org/10.1210/er.18.1.4
  31. Henry TD, Abraham J. Review of preclinical results with vascular endothelial growth factors for therapeutic angiogenesis. Curr Intervent Cardiol Rep 2000;2:228-41
  32. Tio RA, Lebherz C, Scheuermann T, et al. Evidence of collateral development following intramyocardialgene therapy with vascular endothelial growth factor. Surg Forum 1998;49:220-1
  33. Mack CA, Patel SR, Schwarz EA, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168-76 https://doi.org/10.1016/S0022-5223(98)70455-6
  34. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathology and therapy. Circulation 2000;101:2981-8 https://doi.org/10.1161/01.CIR.101.25.2981
  35. Chachques JC, Duarte F, Cattadori B. Angiogenic growth factors and/or cellular therapy for myocardial regeneration: a comparative study. J Thorac Cardiovasc Surg 2004;128:245-53 https://doi.org/10.1016/j.jtcvs.2004.04.007
  36. Tanaka E, Hattan N, Ando K, et al. Amelioration of micro-vascular ischemia by gene transfer of vascular endothelial growth factor in rabbits. J Thorac Cardiovasc Surg 2000;120:720-8 https://doi.org/10.1067/mtc.2000.109536
  37. Simons M, Bonow RO, Chronos NA, et al. Clinincal trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000;102:E73-86 https://doi.org/10.1161/01.CIR.102.11.e73
  38. Tambara K, Sakakibara Y, Sakaguchi G, et al. Transplanted skeletal myoblasts can fully replace the infracted myocardium when they survive in the host in large numbers. Circulation 2003;108(suppl 1):II-259-63
  39. Hojo Y, Ikeda U, Zhu Y, et al. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J Am Coll Cardiol 2000;35:968-73 https://doi.org/10.1016/S0735-1097(99)00632-4
  40. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 1996;270:H1803-11