• Title/Summary/Keyword: therapeutic agents

Search Result 790, Processing Time 0.029 seconds

LJ-1888, a selective antagonist for the A3 adenosine receptor, ameliorates the development of atherosclerosis and hypercholesterolemia in apolipoprotein E knock-out mice

  • Park, Jong-Gil;Jeong, Se-Jin;Yu, Jinha;Kim, Gyudong;Jeong, Lak Shin;Oh, Goo Taeg
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.520-525
    • /
    • 2018
  • Cardiovascular diseases arising from atherosclerosis are the leading causes of mortality and morbidity worldwide. Lipid-lowering agents have been developed in order to treat hypercholesterolemia, a major risk factor for atherosclerosis. However, the prevalence of cardiovascular diseases is increasing, indicating a need to identify novel therapeutic targets and develop new treatment agents. Adenosine receptors (ARs) are emerging as therapeutic targets in asthma, rheumatoid arthritis, cancer, ischemia, and inflammatory diseases. This study assessed whether LJ-1888, a selective antagonist for $A_3$ AR, can inhibit the development of atherosclerosis in apolipoprotein E knock-out ($ApoE^{-/-}$) mice who are fed a western diet. Plaque formation was significantly lower in $ApoE^{-/-}$ mice administered LJ-1888 than in mice not administered LJ-1888, without any associated liver damage. LJ-1888 treatment of $ApoE^{-/-}$ mice prevented western diet-induced hypercholesterolemia by markedly reducing low-density lipoprotein cholesterol levels and significantly increasing high-density lipoprotein cholesterol concentrations. Reduced hypercholesterolemia in $ApoE^{-/-}$ mice administered LJ-1888 was associated with the enhanced expression of genes involved in bile acid biosynthesis. These findings indicate that LJ-1888, a selective antagonist for $A_3$ AR, may be a novel candidate for the treatment of atherosclerosis and hypercholesterolemia.

Updates to Clinical Information on Anticancer Immunotherapy (항암 면역 치료제에 관한 최근 임상 정보)

  • Choi, Eunjoo;Yang, Jae Wook
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.1
    • /
    • pp.65-75
    • /
    • 2018
  • Objective: Over the last several years, immunotherapy has become one of the most promising therapeutic options for cancer. This study aims to summarize the updates on cancer immunotherapy focusing on immune checkpoint inhibitors, such as programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors, which have received attention as new anticancer therapeutic agents. Methods: A literature survey was carried out on PubMed to identify high-impact papers on cancer immunotherapy from 2010. The most recent data on clinical efficacy and safety have been included highlighting the response characteristics to recently approved immunotherapeutic agents. Results: In various cancers, immune checkpoints are a means for cancer cells to evade the immune system. Furthermore, CTLA-4 and PD-L1 can be overexpressed, allowing malignant cells to evade T-cells. Numerous clinical trials have been performed to seek appropriate indication of these products in various cancer types. Among them, the most conspicuous types are melanoma, non-small-cell lung cancer, and head and neck cancer. The approval of ipilimumab by Food and Drug Administration (FDA) commenced a new era of cancer immunotherapy. This was followed by the approval of nivolumab and pembrolizumab. Currently, combination therapies are being investigated for various cancer types. Conclusion: In this study, we reviewed recently reported scientific and clinical evidence for currently approved immune checkpoint inhibitors. Although these novel checkpoint inhibitors are ever evolving for cancer therapies, there exist limitations that need to be overcome, indicating the necessity for further studies aiming to improve their efficacy, toxicity, and cost.

Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma cell line SCC-9 in Vitro

  • Keshava, Rohini;Muniyappa, Nagesh;Gope, Rajalakshmi;Ramaswamaiah, Ananthanarayana Saligrama
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1891-1898
    • /
    • 2016
  • Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

Anticancer effects of genistein, green tea catechins, and cordycepin on oral squamous cell carcinoma

  • Park, Sung-Jin;Myoung, Hoon;Kim, Young-Youn;Paeng, Jun-Young;Park, Jun-Woo;Kim, Myung-Jin;Hong, Soon-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Oral squamous cell carcinoma (OSCC) is the most frequent form of oral cancer and holds the eighth position in the cancer incidence ranking. OSCC patients are treated by classical therapeutic modalities consisting of surgery, radiotherapy, and/or chemotherapy. But OSCC still shows significant mortality rates. Thus, new therapeutic approaches have been investigated and the most promising one is naturally acquired agents with known anti-cancer effects. Genistein is a compound extracted from soy bean. Its anti-cancer effect on breast cancer is well established now and it is investigated whether it has similar effect on OSCC. It inhibited the growth and invasive-ness of OSCC cells in vitro, but these effects did not work in living animals in vivo. Catechin is a compound from green tea and its anti-cancer effect on OSCC is known better than other agents. Catechin showed its anti-cancer effect in vitro via induction of apoptosis, cell cycle arrest, inhibition of growth, and down-regulation of invasion/metastasis. These effects were confirmed in vivo with mouse model. Cordycepin is one of major pharmacologically important components in Cordyceps Militaris and may exert its anti-cancer effect as an adenosine receptor agonist. In recent study, it inhibited the proliferation of OSCC cells via A3 adenosine receptor. But because there is very scarce evidence on this effect, more researches are needed on this theme.

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

[Retracted]Anti-inflammatory activities of octapeptides derived from tertomotide ([논문철회]Tertomotide 유래 옥타펩타이드의 항염증 활성)

  • Lee, Hyosung
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.311-316
    • /
    • 2022
  • Tertomotide is a peptide fragment of hTert and developed as a vaccine targeting cancer. It has been reportedly known to ameliorate inflammatory symptoms in clinical tests and in animal studies. However, the therapeutic potential of tertomotide is not supposed to be comparable to conventional anti-inflammatory agents due to low druglikeness In order to treat inflammations present in varous lesion, the structure of tertomotide is required to be modified. In this context, 12 octapeptides were designed based on tertomotide and screened for the anti-inflammatory activity in activated monocyte by measuring TNF-α secretion. As a result, some octapeptides has been exerted anti-inflammatory activity, comparable to or better than tertomotide and estradiol, known anti-inflammatory agents. This result is supposed to be helpful for developing therapeutic purpose exploiting other tertomotide-derived peptides and would be an example for designing novel drug based on active biomolecules with undesirable structure by convergence study of biology and computer-aided medicinal chemistry.

Pain management in periodontal therapy using local anesthetics and other drugs: an integrative review

  • Eduarda Cristina Santos;Daniela Huller;Sabrina Brigola;Marceli Dias Ferreira;Marcia Thais Pochapski;Fabio Andre dos Santos
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.5
    • /
    • pp.245-256
    • /
    • 2023
  • Background: Surgical and non-surgical periodontal procedures often lead to postoperative pain. Clinicians use pharmacological methods such as anesthetics, anti-inflammatory drugs, and analgesics for relief. However, the multitude of options makes it challenging to select the best approach for routine dental care. Objective: This review aimed to describe previous studies regarding the pharmacological management used for pain control during periodontal procedures as well as factors that may interfere with patients' perception of pain. Methods: We included studies (period of 2000-2023, whose approach corresponded to the pharmacological protocols used for preoperative, trans-operative, and postoperative pain control in adult patients undergoing surgical and non-surgical periodontal therapy. Results: A total of 32 studies were included in the analysis, of which 17 (53%) were related to anesthetic methods and 15 (47%) were related to therapeutic protocols (anti-inflammatory/analgesic agents). These studies predominantly involved nonsurgical periodontal procedures. Studies have reported that factors related to age, type of procedure, and anxiety can influence pain perception; however, only seven of these studies evaluated anxiety. Conclusions: Numerous methods for pain control can be applied in periodontal therapy, which are accomplished through anesthetic methods and/or therapeutic protocols. Factors such as anxiety, age, and type of procedure are related to pain perception in patients. Thus, it is the responsibility of dentists to evaluate each clinical situation and define the best protocol to follow based on the literature.

Colorectal Cancer Therapy Using a Pediococcus pentosaceus SL4 Drug Delivery System Secreting Lactic Acid Bacteria-Derived Protein p8

  • An, Byung Chull;Ryu, Yongku;Yoon, Yeo-Sang;Choi, Oksik;Park, Ho Jin;Kim, Tai Yeub;Kim, Song-In;Kim, Bong-Kyu;Chung, Myung Jun
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.755-762
    • /
    • 2019
  • Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.

Development of an Ex Vivo Model for the Study of Cerebrovascular Function Utilizing Isolated Mouse Olfactory Artery

  • Lee, Hyung-Jin;Dietrich, Hans H.;Han, Byung Hee;Zipfel, Gregory J.
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Objective : Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. Methods : The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately $-500{\mu}m$ in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). Results : We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin $PGH_2$. Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. Conclusion : Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models.

Clinical development of photodynamic agents and therapeutic applications

  • Baskaran, Rengarajan;Lee, Junghan;Yang, Su-Geun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body: Up to dates, several PS were approved for clinical applications or under clinical trials. $Photofrin^{(R)}$ is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium ($Photofrin^{(R)}$), Temoporfin ($Foscan^{(R)}$), Motexafin lutetium, Palladium bacteriopheophorbide, $Purlytin^{(R)}$, Verteporfin ($Visudyne{(R)}$), Talaporfin ($Laserphyrin^{(R)}$) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion: Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.