Anticancer effects of genistein, green tea catechins, and cordycepin on oral squamous cell carcinoma

  • Park, Sung-Jin (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University) ;
  • Myoung, Hoon (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University) ;
  • Kim, Young-Youn (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University) ;
  • Paeng, Jun-Young (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University) ;
  • Park, Jun-Woo (Department of Oral and Maxillofacial Surgery, College of Medicine, Hallym University) ;
  • Kim, Myung-Jin (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University) ;
  • Hong, Soon-Min (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University)
  • Published : 2008.02.29

Abstract

Oral squamous cell carcinoma (OSCC) is the most frequent form of oral cancer and holds the eighth position in the cancer incidence ranking. OSCC patients are treated by classical therapeutic modalities consisting of surgery, radiotherapy, and/or chemotherapy. But OSCC still shows significant mortality rates. Thus, new therapeutic approaches have been investigated and the most promising one is naturally acquired agents with known anti-cancer effects. Genistein is a compound extracted from soy bean. Its anti-cancer effect on breast cancer is well established now and it is investigated whether it has similar effect on OSCC. It inhibited the growth and invasive-ness of OSCC cells in vitro, but these effects did not work in living animals in vivo. Catechin is a compound from green tea and its anti-cancer effect on OSCC is known better than other agents. Catechin showed its anti-cancer effect in vitro via induction of apoptosis, cell cycle arrest, inhibition of growth, and down-regulation of invasion/metastasis. These effects were confirmed in vivo with mouse model. Cordycepin is one of major pharmacologically important components in Cordyceps Militaris and may exert its anti-cancer effect as an adenosine receptor agonist. In recent study, it inhibited the proliferation of OSCC cells via A3 adenosine receptor. But because there is very scarce evidence on this effect, more researches are needed on this theme.

Keywords

References

  1. Mehrotra R, Yadav S: Oral squamous cell carcinoma: etiology, pathogenesis and prognostic value of genomic alterations. Indian J Cancer 2006;43(2):60-6 https://doi.org/10.4103/0019-509X.25886
  2. Beenken SW, Urist MM. Current surgical diagnosis and treatment. New York: Lange Medical Books/McGraw-Hill;2003
  3. Reddy L, Odhav B, Bhoola KD: Natural products for cancer prevention: a global perspective. Pharmacol Ther 2003;99(1):1-13 https://doi.org/10.1016/S0163-7258(03)00042-1
  4. Willett WC: Diet and health: what should we eat? Science 1994;264(5158):532-7 https://doi.org/10.1126/science.8160011
  5. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71(10):1397-421 https://doi.org/10.1016/j.bcp.2006.02.009
  6. Goldin BR, Adlercreutz H, Gorbach SL, Woods MN, Dwyer JT, Conlon T, et al.: The relationship between estrogen levels and diets of Caucasian American and Oriental immigrant women. Am J Clin Nutr 1986;44(6):945-53 https://doi.org/10.1093/ajcn/44.6.945
  7. Troll W, Wiesner R, Shellabarger CJ, Holtzman S, Stone JP: Soybean diet lowers breast tumor incidence in irradiated rats. Carcinogenesis 1980;1(6):469-72 https://doi.org/10.1093/carcin/1.6.469
  8. Barnes S, Peterson TG, Coward L: Rationale for the use of genistein-containing soy matrices in chemoprevention trials for breast and prostate cancer. J Cell Biochem Suppl 1995;22:181-7
  9. Kim YY, Myoung H, Kim MJ. Chemopreventive effect of genisten in hamster buccal pouch carcinogenesis. J Kor Oral Maxillofac Surg 2001;27(2):135-41
  10. Adlercreutz H: Evolution, nutrition, intestinal microflora, and prevention of cancer: a hypothesis. Proc Soc Exp Biol Med 1998;217(3):241-6
  11. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, et al.: Genistein, a specific inhibitor of tyrosinespecific protein kinases. J Biol Chem 1987;262(12):5592-5
  12. Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, et al.: Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 2005;65(19):9064-72 https://doi.org/10.1158/0008-5472.CAN-05-1330
  13. Hillman GG, Forman JD, Kucuk O, Yudelev M, Maughan RL, Rubio J, et al.: Genistein potentiates the radiation effect on prostate carcinoma cells. Clin Cancer Res 2001;7(2):382-90
  14. Sarkar FH, Li Y: Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 2006;66(7):3347-50 https://doi.org/10.1158/0008-5472.CAN-05-4526
  15. Myoung H, Hong SP, Yun PY, Lee JH, Kim MJ: Anti-cancer effect of genistein in oral squamous cell carcinoma with respect to angiogenesis and in vitro invasion. Cancer Sci 2003;94(2):215-20 https://doi.org/10.1111/j.1349-7006.2003.tb01422.x
  16. Elattar TM, Virji AS: The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res 2000;20(3A):1733-8
  17. Shirataki Y, Tani S, Sakagami H, Satoh K, Nakashima H, Gotoh K, et al.: Relationship between cytotoxic activity and radical intensity of isoflavones from Sophora species. Anticancer Res 2001;21(4A):2643-8
  18. Ye F, Wu J, Dunn T, Yi J, Tong X, Zhang D: Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett 2004;211(1):39-46 https://doi.org/10.1016/j.canlet.2004.03.043
  19. Yang Y, Zhou ZT, Ge JP: Effect of genistein on DMBA-induced oral carcinogenesis in hamster. Carcinogenesis 2006;27(3):578-83 https://doi.org/10.1093/carcin/bgi234
  20. Yang CS, Wang ZY: Tea and cancer. J Natl Cancer Inst 1993;85(13):1038-49 https://doi.org/10.1093/jnci/85.13.1038
  21. Babich H, Krupka ME, Nissim HA, Zuckerbraun HL: Differential in vitro cytotoxicity of (-)-epicatechin gallate (ECG) to cancer and normal cells from the human oral cavity. Toxicol In Vitro 2005;19(2):231-42 https://doi.org/10.1016/j.tiv.2004.09.001
  22. Liang YC, Lin-shiau SY, Chen CF, Lin JK: Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 1997;67(1):55-65 https://doi.org/10.1002/(SICI)1097-4644(19971001)67:1<55::AID-JCB6>3.0.CO;2-V
  23. Masuda M, Suzui M, Weinstein IB: Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 2001;7(12):4220-9
  24. Masuda M, Suzui M, Lim JT, Weinstein IB: Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res 2003;9(9):3486-91
  25. Nomura M, Ma W, Chen N, Bode AM, Dong Z: Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NFkappaB activation by tea polyphenols, (-)-epigallocatechin gallate and theaflavins. Carcinogenesis 2000;21(10):1885-90 https://doi.org/10.1093/carcin/21.10.1885
  26. Yang CS, Chung JY, Yang GY, Li C, Meng X, Lee MJ: Mechanisms of inhibition of carcinogenesis by tea. Biofactors 2000;13(1-4):73-9 https://doi.org/10.1002/biof.5520130113
  27. Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, Weinstein IB: Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2002;2(6):350-9 https://doi.org/10.1046/j.1359-4117.2002.01062.x
  28. Weisburg JH, Weissman DB, Sedaghat T, Babich H: In vitro cytotoxicity of epigallocatechin gallate and tea extracts to cancerous and normal cells from the human oral cavity. Basic Clin Pharmacol Toxicol 2004;95(4):191-200
  29. Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG: Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 1998;19(3):419-24 https://doi.org/10.1093/carcin/19.3.419
  30. Hsu S, Lewis J, Singh B, Schoenlein P, Osaki T, Athar M, et al.: Green tea polyphenol targets the mitochondria in tumor cells inducing caspase 3-dependent apoptosis. Anticancer Res 2003;23(2B):1533-9
  31. Elattar TM, Virji AS: Effect of tea polyphenols on growth of oral squamous carcinoma cells in vitro. Anticancer Res 2000;20(5B):3459-65
  32. Hsu S, Farrey K, Wataha J, Lewis J, Borke J, Singh B, et al.: Role of p21WAF1 in green tea polyphenol-induced growth arrest and apoptosis of oral carcinoma cells. Anticancer Res 2005;25(1A):63-7
  33. Fan XJ: In vitro effect of catechin on cell growth. Zhonghua Zhong Liu Za Zhi 1992;14(3):190-2
  34. Ko SY, Chang KW, Lin SC, Hsu HC, Liu TY: The repressive effect of green tea ingredients on amyloid precursor protein (APP) expression in oral carcinoma cells in vitro and in vivo. Cancer Lett 2007;245(1-2):81-9 https://doi.org/10.1016/j.canlet.2005.12.029
  35. Schwartz JL, Baker V, Larios E, Chung FL: Molecular and cellular effects of green tea on oral cells of smokers: a pilot study. Mol Nutr Food Res 2005;49(1):43-51 https://doi.org/10.1002/mnfr.200400031
  36. Srinivasan P, Sabitha KE, Shyamaladevi CS: Therapeutic efficacy of green tea polyphenols on cellular thiols in 4-Nitroquinoline 1-oxide-induced oral carcinogenesis. Chem Biol Interact 2004;149(2-3):81-7 https://doi.org/10.1016/j.cbi.2004.06.006
  37. Li N, Chen X, Liao J, Yang G, Wang S, Josephson Y, et al.: Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 2002;23(8):1307-13 https://doi.org/10.1093/carcin/23.8.1307
  38. Li N, Chen X, Han C, Chen J: Chemopreventive effect of tea and curcumin on DMBA-induced oral carcinogenesis in hamsters. Wei Sheng Yan Jiu 2002;31(5):354-7
  39. Li N, Han C, Chen J: Tea preparations protect against DMBA-induced oral carcinogenesis in hamsters. Nutr Cancer 1999;35(1):73-9 https://doi.org/10.1207/S1532791473-79
  40. Li N, Han C, Chen J: Effects of tea on DMBA-induced oral carcinogenesis in hamsters. Wei Sheng Yan Jiu 1999;28(5):289-92
  41. Azuine MA, Bhide SV: Adjuvant chemoprevention of experimental cancer: catechin and dietary turmeric in forestomach and oral cancer models. J Ethnopharmacol 1994;44(3):211-7 https://doi.org/10.1016/0378-8741(94)01188-5
  42. Kim GY, Ko WS, Lee JY, Lee JO, Ryu CH, Choi BT, et al.: Water extract of Cordyceps militaris enhances maturation of murine bone marrow-derived dendritic cells in vitro. Biol Pharm Bull 2006;29(2):354-60 https://doi.org/10.1248/bpb.29.354
  43. Cunningham KG, Hutchinson SA, Manson W, Spring FS: Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) Link. Part I. Isolation and characterisation. J Chem Soc 1951:2299-300 https://doi.org/10.1039/jr9510002299
  44. Koc Y, Urbano AG, Sweeney EB, McCaffrey R: Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 1996;10(6):1019-24
  45. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H: Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem Pharmacol 2000;59(3):273-81 https://doi.org/10.1016/S0006-2952(99)00325-1
  46. Kuo YC, Lin CY, Tsai WJ, Wu CL, Chen CF, Shiao MS: Growth inhibitors against tumor cells in Cordyceps sinensis other than cordycepin and polysaccharides. Cancer Invest 1994;12(6):611-5 https://doi.org/10.3109/07357909409023046
  47. Nakamura K, Konoha K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, et al.: Effect of cordycepin (3'-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 2005;19(1):137-41
  48. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M; Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res 2006;26(1A):43-7
  49. Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M: Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol 2004;31 Suppl 2:S51-3 https://doi.org/10.1111/j.1440-1681.2004.04108.x
  50. Kredich NM: Inhibition of nucleic acid methylation by cordycepin. In vivo synthesis of S-3'-DEOXYADENOSYL-METHIONINE BY WI-L2 human lymphoblasts. J Biol Chem 1980;255(15):7380-5
  51. Duncan RF: Cordycepin blocks recovery of non-heat-shock mRNA translation following heat shock in Drosophila. Eur J Biochem 1995;233(3):784-92 https://doi.org/10.1111/j.1432-1033.1995.784_3.x
  52. Ohana G, Bar-Yehuda S, Barer F, Fishman P: Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol 2001;186(1):19-23 https://doi.org/10.1002/1097-4652(200101)186:1<19::AID-JCP1011>3.0.CO;2-3
  53. Yaar R, Jones MR, Chen JF, Ravid K: Animal models for the study of adenosine receptor function. J Cell Physiol 2005;202(1):9-20 https://doi.org/10.1002/jcp.20138
  54. Fishman P, Bar-Yehuda S, Ardon E, Rath-Wolfson L, Barrer F, Ochaion A, et al.: Targeting the A3 adenosine receptor for cancer therapy: inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res 2003;23(3A):2077-83
  55. Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS, Pathak S: The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp Cell Res 2001;269(2):230-6 https://doi.org/10.1006/excr.2001.5327
  56. Fishman P, Bar-Yehuda S, Madi L, Cohn I: A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs 2002;13(5):437-43 https://doi.org/10.1097/00001813-200206000-00001
  57. Fishman P, Bar-Yehuda S, Ohana G, Pathak S, Wasserman L, Barer F, et al.: Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur J Cancer 2000;36(11):1452-8 https://doi.org/10.1016/S0959-8049(00)00130-1
  58. Lee EJ, Min HY, Chung HJ, Park EJ, Shin DH, Jeong LS, et al.: A novel adenosine analog, thio-Cl-IB-MECA, induces G0/G1 cell cycle arrest and apoptosis in human promyelocytic leukemia HL-60 cells. Biochem Pharmacol 2005;70(6):918-24 https://doi.org/10.1016/j.bcp.2005.06.017
  59. Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P: A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 2003;278(43):42121-30 https://doi.org/10.1074/jbc.M301243200
  60. Liu H, Yu GY: Antimetastatic effects of genistein on salivary adenoid cystic carcinoma in vivo. Zhonghua Kou Qiang Yi Xue Za Zhi 2004;39(5):373-5
  61. Chiang WC, Wong YK, Lin SC, Chang KW, Liu CJ: Increase of MMP-13 expression in multi-stage oral carcinogenesis and epigallocatechin-3-gallate suppress MMP-13 expression. Oral Dis 2006;12(1):27-33 https://doi.org/10.1111/j.1601-0825.2005.01151.x
  62. Yamamoto T, Staples J, Wataha J, Lewis J, Lockwood P, Schoenlein P, et al.: Protective effects of EGCG on salivary gland cells treated with gamma-radiation or cisplatinum(II)diammine dichloride. Anticancer Res 2004;24(5A):3065-73
  63. Hsu S, Yu FS, Lewis J, Singh B, Borke J, Osaki T, et al.: Induction of p57 is required for cell survival when exposed to green tea polyphenols. Anticancer Res 2002;22(6C):4115-20
  64. Khafif A, Schantz SP, al-Rawi M, Edelstein D, Sacks PG: Green tea regulates cell cycle progression in oral leukoplakia. Head Neck 1998;20(6):528-34 https://doi.org/10.1002/(SICI)1097-0347(199809)20:6<528::AID-HED7>3.0.CO;2-3