• Title/Summary/Keyword: the viscosity

Search Result 6,461, Processing Time 0.035 seconds

Convergence Study on In Vitro Lipid Digestibility of Instant Fried Noodle with HPMC (HPMC 점도의 유탕면 지방소화 지연에 대한 융합 연구)

  • Bae, In Young;Jang, Hye Lim;Choi, Yean Jung;Lee, Hyeon Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • The effects of HPMC (hydroxypropyl methylcellulose) on instant fried noodles regarding oil uptake and in vitro lipid digestibility were evaluated according to different viscosity levels, as well as the same apparent viscosity. The oil uptake and lipid digestibility decreased with the increasing HPMC viscosity and replacement level, demonstrating that the reduced oil uptake and lipid digestibility may be caused by the high viscosity of HPMC. Furthermore, the oil uptake and lipid digestibility of noodles with HPMC at both apparent viscosities decreased with the increasing viscosity of HPMC in spite of having the same apparent viscosity. As a result, the high viscosity of HPMC on instant fried noodles was more critical factor compared to apparent viscosity for lowering oil uptake and lipid digestibility.

The Effects of viscosity and Osmolality of Enteral Solution on Flow Rates Through Nasogastric Tubes in Vitro (경관급식 유동액의 점도와 삼투압이 체외에서 비장관 튜브를 통한 흐름속도에 미치는 영향)

  • 한경희
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.793-803
    • /
    • 1993
  • This study was designed to measure viscosity, osmolality and in vitro flow rates via nasogastric tubes for 6 types of commercially available and 9 hospital-blenderized enteral solutions and to examine the effect of viscosity and osmolaility of enteral formula on the flow rates in gravity drip administration. Each solution was infused through 18, 16, 14, 12 French sizes of silicone rubber tube. Flow rates were measured six times at $25^{\circ}C$ using formula bags and drip sets hung at a uniform height on a intravenous drip stand with tube uniformly positioned in collecting container. Viscosity ranged widely from 16.0 to 195.5 cps with mean, 64.61$\pm$64.42 for hospital-blenderized formula while mean viscosity of commercial formula was 7.60$\pm$4.84 cps. Mean osmolality of commercial formula and hospital-blenderized formula were 370$\pm$100.80, 540.33$\pm$89.37 mOsm/kg respectively. There was negative relationship between viscosity of formula and flow rates through tubes but no significant relationship between flow rates and osmolalty. Some of hospital-blenderized formula was too viscous to be infused througth tube with gravity drip administration and the recipe of formula requires to be modiifed. On the other hand, commercial formula with the low viscosity flows too rapidly with large bore size tubes. Smaller size of tube must be selected for hyperosmolar solution to decrease possible side effects associated with tube feeding. Two kinds of regression equations for flow rates obtained according to viscosity and tube sizes were also presented for the purpose of practical uses. In conclusion, this study emphasizes that viscosity of fomula, osmolality, patient's tolerance and comfort, caloric density should be considered in the selection of tubes for gravify drip administration.

  • PDF

Hydrostatic Pressure Effects on Physical Properties of Ultrafiltrated Skim Milk in the Presence of EGTA (EGTA를 첨가한 한외여과 탈지유의 물성에 미치는 초고압의 영향)

  • ;C. Kanno;T. Hagiwara
    • Food Science of Animal Resources
    • /
    • v.21 no.1
    • /
    • pp.32-37
    • /
    • 2001
  • The study investigated the effects of protein concentration, EGTA and strength of hydrostatic pressure on pH, viscosity and turbidity for ultra filtrated skim milk retentates. The results showed that hydrostatic pressure treatments up to 600 MPa did not affect the viscosity of skim milk, while the turbidity of skim milk increased at higher than 200 MPa. Addition of EGTA caused reduction in turbidity of skim milk, two times (2SR) and three times (3SR) concentrated skim milk retentates. Viscosity for 2SR and 3SR increased proportionally to the amount of EGTA, but viscosity of skim milk was not influenced by EGTA. High pressure treatment also did not cause any difference in viscosity and turbidity of skim milk. However, this treatment decreased viscosity and turbidity for 2SR and 3SR. In particular, 200 MPa treatment showed to induce a higher decrease in turbidity compared with 400 MPa.

  • PDF

Viscosity Properties of Corn, Potato and Sweet Potato Starch according to pH. (옥수수, 감자 및 고구마 전분의 pH에 따른 점도 특성)

  • 최옥자;신말식;조성효
    • Korean Journal of Human Ecology
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 2000
  • This study was perfomed to search for how properties of the starch viscosity appear in different qualities, when acetic acid is added. For this study, corn starch which belongs to A-type. Potato starch to B-type. and sweet potato starch to C-type were chosen as an experimental material. which was added to acetic acid controlled as pH 4.0, 4.5, and 5.0 at the time of before and after heating. After that, the viscosity properties of each starch was analyzed using Amylogram and Brookfield viscometer. As a result. the viscosity was shown high in an order of potato. sweet potato, and corn starch. According to addition of acetic acid. tile viscosity appeared to be low. The viscosity differences of before and after heating when the acid is added were shown as follows : Amylogram shows that the lower the pH is. the lower the viscosity is when the acid is added before-heating. In case the acid is added before-heating, gelatinization temperature, consistency and setback was increased. but breakdown decreased. In case the acid is added after-heating, the viscosity goes down at soon as it is added meanwhile consistency and setback was decreased. but breakdown increased. Such properties of the viscosity show a conspicuous variation in an order of potato. sweet Potato. and corn starch. Brookrield viscometer shows that the lower the apparent viscosity is. the lower pH is at the time of before-heating when the acid is added. In case of after-heating, when the acid is added. the apparent viscosity shows a higher inclination than that of before-heating in corn starch and sweet potato starch.

  • PDF

Encapsulation of Pine Agaric ( Tricholoma matsutake) Flavor with Alginates (알긴산을 이용한 송이 향의 캡슐화)

  • You Byeong Jin;Lim Yeong seon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.231-236
    • /
    • 2002
  • Encapsulating 1-octen-3-ol with alginates solution, the effects of physical properties (viscosity, emulsion activity, emulsion stability) of alginates solutin on the retention of 1-octen-3-ol in capsules were investigated. Only alginates solutions haying less than 350 cP in viscosity were capable to be adopted to spray dry. Adding citric acid to alginates solution in order to reduce its viscosity, the concentration of citric acid became higher, the viscosity of alginates solution were lower. Adding $0.1\% of citric acid could reduce viscosity of alginates solution to 150 cP. The viscosity of alginates solution after emulsifying showed higher value than that of solution before emulsifying, but its viscosity were within the possible ranges for spray drying. The lower viscosity of alginates solution were, EAI became higher but ESI and amount of remaining 1-octen-3-ol in capsules were lower, In reducing the viscosity of alginates solutions, heating time after adding citric acid were longer, the their viscosity became lower. Differences of viscosity of alginates solution after and before emulsifying were little, In encapsulating raw pine agaric with alginates solution, the adding amount of soybean oil increased, the amounts of remaining 1-octen-3-ol in capsules increased. After freeze drying the amount of remaining 1-octen-3-ol in alginates capsules prepared with raw pine agaric was higher than that after cold air flow drying.

Viscosity Change of Polysaccharide, Methylan by Acids Content (다당류 메틸란의 산 성분 함량에 따른 점도의 변화)

  • Kim, Sang-Yong;Kim, Jung-Hoe;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1151-1157
    • /
    • 1997
  • The chemical identities of purified polysaccharide, methylan, were analyzed by various chemical methods. The polysaccharide contained 79%(w/w) sugar, 6% protein, and 16% organic acids such as uronic acid, pyruvic acid, and acetic acid. With proceeding fermentation, the acids content in methylan increased from 10% at 34 hr to 17% at 72 hr, and the viscosity of methylan in the same concentration also increased. The correlation between viscosity and acid content in methylan was studied using chemically or biologically modified methylan. Methylan with a high content of pyruvic acid exhibited a high apparent and an intrinsic ·viscosity. When the pyruvic acid content of methylan with the same content of uronic acid was increased 1%, apparent viscosity and intrinsic viscosity increased 290 cp and 6 dL/g, respectively. Methylan with a high content of uronic acid exhibited a high apparent and an intrinsic viscosity. When the uronic acid content of methylan with the same content of pyruvic acid was increased 1%, apparent viscosity and intrinsic viscosity increased 85 cp and 1.5 dL/g, respectively. It was found that the increased viscosity of methylan resulted from the increased content of organic acids in methylan, and pyruvic acid was more an important factor contributed to the increase of methylan viscosity than uronic acid.

  • PDF

A Study on the Abnormal Behavior of the Viscosity near the Critical Point

  • Kim, Won-Soo;Pak, Hyung-Suk;Chair, Tong-Seek
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.372-374
    • /
    • 1989
  • The new viscosity theory is applied to the abnormal behavior of the viscosity near the critical point. This theory suggests that the viscosity is equal to the product of the absolute pressure(kinetic pressure + internal pressure) and the collision time. We can find this abnormal behavior to be due to the large collision time near the critical point. The agreements between theoriticals and experimentals of the critical enhancement are satisfactory.

Determination of Viscosity Average Molecular Weight from Number and Weight Average Molecular Weights

  • Park, Eun-Soo;Yoon, Jin-San
    • Macromolecular Research
    • /
    • v.8 no.5
    • /
    • pp.243-245
    • /
    • 2000
  • can be determined from the number and weight average molecular weight. When the value of the exponent, a, appearing in the relation between the intrinsic viscosity and the viscosity average molecular weight, is in the range from 0.6 to 0.8, as is the case for the most polymers, the viscosity average molecular weight is much more close to the weight average molecular weight than to the number average molecular weight.

  • PDF

봉의 비틀림 고유진동에 대한 인접 점성유체의 영향

  • 김진오;전한용
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.168-173
    • /
    • 2000
  • This paper deals with the theoretical study on the effect of the viscosity of an adjacent viscous fluid on the characteristics of the torsional vibration of a rod with fixed-free boundary conditions. Expressions for the natural frequency and damping factor have been obtained as functions of the viscosity of the fluid by exact and asymptotic analyses. The results provide quantitative information of the natural frequency reduction and damping rate affected by the fluid viscosity.

  • PDF

Viscosity and Volume Effects on Convective Flows in PGSE-NMR Self-Diffusion Measurements at High Temperature

  • Seo, Ji Hye;Chung, Kee-Choo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.122-132
    • /
    • 2012
  • The effects of the sample viscosity and volume on the convective flows induced by temperature gradient in PGSE-NMR self-diffusion measurements at high temperature have been investigated. The experimental results showed that the viscosity of the liquid sample strongly affects the magnitude of the convective flows as well as the diffusion coefficient itself. It was also found that the convective flows increase as the sample volume increase.