• 제목/요약/키워드: the strength parameters

검색결과 3,621건 처리시간 0.03초

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • 제1권1호
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

Relationship between angiotensin-converting enzyme gene polymorphism and muscle damage parameters after eccentric exercise

  • Kim, Jooyoung;Kim, Chang-Sun;Lee, Joohyung
    • 운동영양학회지
    • /
    • 제17권2호
    • /
    • pp.25-34
    • /
    • 2013
  • This study was conducted to investigate the relationship between ACE gene polymorphism and muscle damage parameters after eccentric exercise. 80 collegiate males were instructed to take an eccentric exercise with the elbow flexor muscle through the modified preacher curl machine for 2 sets of 25 cycles (total 50 cycles). The maximal isometric strength, muscle soreness, creatine kinase (CK), and myoglobin (Mb) were measured before exercise, and 0, 24, 48, 72, and 96 hrs after exercise. The result showed that after the eccentric exercise, the maximal isometric strength significantly decreased by more than 50% (p < 0.001) and the muscle soreness, CK, and Mb significantly increased compared to those before the exercise (p < 0.001). The ACE gene polymorphism of the subjects was classified using real-time polymerase chain reaction (real-time PCR). The result showed that it consisted of 38 cases of type II (46.4%), 33 cases of type ID (43.4%), and 9 cases of type DD (10.2%). The Hardy-Weinberg equilibrium for ACE gene polymorphism was shown to have p = 0.653, which showed that each allele was evenly distributed. Although significant differences in the changes in the maximal isometric strength, muscle soreness, CK, and Mb were found according to time course (p < 0.001), no significant differences in the changes in the maximal isometric strength, muscle soreness, CK, and Mb were found according to ACE gene polymorphism. Furthermore, no significant difference in the changes in the muscle damage parameters was found according to interaction between ACE gene polymorphism and time course (p > 0.05). In conclusion, the level of the muscle damage parameters changed in the injured muscle after eccentric exercise, but these changes in the muscle damage parameters were not affected by ACE gene polymorphism. The result of this study indicates that ACE gene is not a candidate gene that explains muscle damage.

조립재가 흙의 역학적 성질에 미치는 영향 (Effect of Coarse mateflal on the mechanical properties of Soil)

  • 윤충섭;김호일
    • 한국농공학회지
    • /
    • 제31권3호
    • /
    • pp.57-69
    • /
    • 1989
  • The study was carried out for the strength parameter of coarse grained Soil and slope stability analysis of earth dam. The test samples were taken fifteen kinds of soil from cohesive soil to coarse gravel. The degree of compaction of test samples for shear test and permeability test was chosen 95 percentage of maximum dry density. The results of this study are as follows ; 1.The maximum dry density(Yd) of coarse grained soil increase in proportion to coarse particles(P) with the relation of Y d= 1.609+0.0043P. 2.The coefficients of permeability(k) decrease by the increase of fine particles(n) with the relation of k=0.0426e-0 185n. 3.The cohesions of soil decrease by the increase of coarse particles, but internal friction angles are more increased in same condition. 4.The internal friction angles(${\Phi}$) decrease in inverse proportion to void ratio(e) with the relation of ${\Phi}$ = 73.068 - 69.268e. 5.The strength parameters( Ct ${\Phi}$t) by triaxial compression test are clearly smaller than that (Cd, ${\Phi}$d) by direct shear test in fine grained soil, but the differences between both parameters are a little in coarse grained soil.The relations of both parameters are as follows; Ct = O.544Cd + 0.04 ${\Phi}$t= 1.282${\Phi}$d-2306 6.In cohesive soil, the strength parameters( Cl ${\Phi}$l) by large size shear test apparatus are similar to the strength parameters(Cs , ${\Phi}$s) by small size shear test appratus, but Cs and ${\Phi}$s values are larger than Cl and ${\Phi}$l values from 10 percentage to 20 percentage in coarse grained soil. 7.The fine grained soil is inappropriate to high dam more than 20 meters and it must be taken coarse grained soil with high internal friction angle for high dam.

  • PDF

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

전라남도 장성과 화순에 분포하는 석회암풍화토의 물성 및 전단 특성 (The Physical and Shear Strength Properties of the Weathered Limestone Soils in Changsung and Hwasun Area of Chonnam Province, Korea)

  • 김해경
    • 지질공학
    • /
    • 제13권3호
    • /
    • pp.335-344
    • /
    • 2003
  • 본 연구에서는 전라남도 장성과 화순에 분포하는 석회암풍화토의 물성 및 전단 특성을 연구하였다. 석회암풍화토의 교란시료에 대한 물성 및 전단 특성을 파악하기 위하여 실내 시험이 수행되었다. 연구지역의 석회암풍화토에 대한 물성 및 전단 특성은 다음과 같다 비중(Gs)은 2.78~2.80, 액성한계(LL)는 37~38(%), 소성지수(PI)는 13.7~15.4이며 흙의 분류(USCS)는 CL에 해당된다. 불포화 시료의 직접전단시험 (vd, $1.5t/\textrm{m}^3$)에 의한 강도정수는 점착력(c)이 3.07~4.4 ($t/\textrm{m}^2$) 그리고 내부마찰각($\Phi$)은 $34.8~42.4^{\circ}$의 범위를 보인다. 화강암풍화토 (양, 1997; 문. 1998; 박, 1998)와 비교해 보면, 연구지역의 석회암 풍화토의 물리적 특성은 일반적으로 차이를 보이며, 전단 강도정수 중, 내부마찰각은 대체적으로 유사한 경향을 보이는 것으로 나타났다.

국내 암반분류 사례를 통한 싱글쉘 터널 지보량 산정 연구 (Evaluation of Support Requirements for the Single Shell Tunnels from the Case Study of Rock Mass Classifications)

  • 김학준;이성호;신휴성;배규진
    • 지질공학
    • /
    • 제16권3호
    • /
    • pp.283-291
    • /
    • 2006
  • 기존의 NATM 터널에서는 숏크리트가 임시적인 지보재로 사용되었으나 싱글쉘에서는 영구적인 구조물의 역할을 담당하게 된다. 따라서 숏크리트에 작용하는 하중과 변위를 신뢰성 있게 예측하는 것이 터널의 안정성을 확보하기 위한 필수조건이므로 지반정수 산정의 정확성이 매우 중요하다. 특히, 국내의 지질상태는 외국과 다르므로 싱글쉘 공법을 국내에 적용하기 위해서는 국내 지질상태를 고려한 지반정수 산정기법의 기술 개발이 필수적이다. 본 연구에서는 국내 25개 터널 현장에서의 암반분류 사례 및 지반정수 사례를 조사하였다. 국내 싱글쉘 터널공법을 위한 지보 패턴안을, Q분류에서 수정된 NMT방법과 국내 암반상태를 고려하여 제안하였다. 또한 사례연구를 통한 Q시스템과 RMR값의 상관성을 이용하여 RMR을 이용한 지보량을 제시하였다.

다구찌 방법에 의한 유리-실리콘 양극접합 계면의 파괴인성치 측정 및 양극접합공정 조건에 따른 접합강도 분석 (Measurement of Glass-Silicon Interfacial fracture Toughness and Experimental Evaluation of Anodic Bonding Process based on the Taguchi Method)

  • 강태구;조영호
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1187-1193
    • /
    • 2002
  • Anodic bonding process has been quantitatively evaluated based on the Taguchi analysis of the interfacial fracture toughness, measured at the interface of anodically bonded silicon-glass bimorphs. A new test specimen with a pre-inserted blade has been devised for interfacial fracture toughness measurement. A set of 81 different anodic bonding conditions has been generated based on the three different conditions for four different process parameters of bonding load, bonding temperature, anodic voltage and voltage supply time. Taguchi method has been used to reduce the number of experiments required for the bonding strength evaluation, thus obtaining nine independent cases out of the 81 possible combinations. The interfacial fracture toughness has been measured for the nine cases in the range of 0.03∼6.12 J/㎡. Among the four process parameters, the bonding temperature causes the most dominant influence to the bonding strength with the influence factor of 67.7%. The influence factors of other process parameters, such as anodic voltage and voltage supply time, bonding load, are evaluated as 18%, 12% and 2.3%, respectively. The maximum bonding strength of 7.23 J/㎡ has been achieved at the bonding temperature of 460$\^{C}$ with the bonding load of 45gf/㎠, the applied voltage of 600v and the voltage supply time of 25minites.

장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구 (A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges)

  • 심종성;오홍섭;김민수
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee;Atefeh Soleymani;Hamed Hasani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.1-13
    • /
    • 2023
  • This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.