• Title/Summary/Keyword: the rise of the novel

Search Result 151, Processing Time 0.029 seconds

Sea cucumber as a therapeutic aquatic resource for human health

  • Siddiqui, Ruqaiyyah;Boghossian, Anania;Khan, Naveed Ahmed
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.251-263
    • /
    • 2022
  • Sea cucumbers are worm-like, leathery bodied, benthic, marine organisms with a branched gonad. There are over 900 species, and these organisms are capable of changing their mechanical state, regenerating their small appendages, and digestive tract. Additionally, sea cucumbers possess both commercial and therapeutical value. Furthermore, it is thought that the metabolites these organisms possess may give rise to their therapeutical value. The use of sea cucumbers in therapy can be traced back to the Ming dynasty, where they were eaten for their tonic properties against constipation, hypertension, and rheumatism. A plethora of studies have been conducted, whereby different metabolites were extracted from sea cucumbers and tested for different therapeutic properties. Herein, we review and discuss the anti-cancer, anti-microbial, anti-coagulant, anti-diabetic, antioxidant, and anti-inflammatory properties of the sea cucumber by assessing literature on PubMed and Google Scholar. Furthermore, the genome and epigenome of these remarkable species is discussed. With the immense data supporting the therapeutic properties of sea cucumbers, further studies are warranted, in order to develop novel and innovative therapeutic compounds for the benefit of human health from these fascinating marine organisms.

A Study on Development of Lightning and Surge Protection System for Electrical Fire Prevention (전기화재 예방을 위한 낙뢰 및 써지 보호시스템 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.27-32
    • /
    • 2006
  • The occurrence frequency of lightning and surge from the weather accident is increasing recently, which the damage scale have been enlarged every year. A protection system development to solve these problems have been risen to a multinational concern field. In this paper, a novel protection system is proposed to restrain lightning and various surges which happen in electricity and communication equipment. The proposed protection system is designed to the structure to restrain the rise of the earth potential which is become to the problem of conventional protection system. The secondary damage as a result does not happen. The practicality of the developed surge protection system is proved through various accident occurrence simulator.

  • PDF

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Multiple Gonadotropin-Releasing Hormone Neuronal Systems in Vertebrates

  • Parkhar, lshwar S.
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Gonadotropin-releasing hormone (GnRH) was originally isolated as a hypothalamic peptide that regulates reproduction by stimulating the release of gonadotropins. Using comparative animal models has led to the discovery that GnRH has a more ancient evolutionary origin. Durinq evolution GnRH peptide underwent gene duplication and structural changes to give rise to multiple molecular forms of GnRHs. Mammalian GnRH initially considered to be the sole molecular form, is now grouped as a family of peptides along with GnRH variants determined from representatives in all classes of vertebrates. Vertebrate species including primates and humanshave more than one GnRH variant in individual brains; a unique GnRH form in the forebrain and chicken IIGnRH in the midbrain. Furthermore, several species of bony fish have three molecular variants of GnRH: salmon GnRH sea-bream GnRH and chicken II GnRH. Also, it has been shown that in addition to the olfactory placodes and the midbrain, there is a third embryonic source of GnRH neurons from the basal diencephalon in birds and fish, which might be true for other vertebrates. Therefore, comparative animal models like fish with discrete sites of expression of three molecular variants of GnRH in individual brains, could provide insight into novel functions of GnRH variants, conservation of gene regulation, and mechanisms governing reproduction in vertebrates.

  • PDF

A novel risk assessment approach for data center structures

  • Cicek, Kubilay;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.471-484
    • /
    • 2020
  • Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.

Characteristics of Plastic Deformation of Commercially Pure Aluminum in Half Channel Angular Extrusion (HCAE) (공업용 순 알루미늄의 반통로각압출(Half Channel Angular Extrusion) 공정에서의 소성 변형 특성)

  • Kim, Kyung Jin;Cho, Hyun Deog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.120-127
    • /
    • 2013
  • A novel severe plastic deformation process named half channel angular extrusion (HCAE) is proposed in order to produce bulk UFG materials. In HCAE process, equal channel angular extrusion (ECAE) and conventional forward extrusion process is integrated to increase the strain per pass and effectiveness of the SPD process. Three-dimensional finite element analysis was carried out to study the deformation behavior of the materials in the HCAE process. HCAE process was performed experimentally on commercially pure aluminum (AA1050) and micro-Vickers hardness test was used to measure the distribution of hardness on the section of normal to the extrusion direction. The results show that HCAE is able to impose more intensive strains per pass and give rise to higher micro-hardness than ECAE.

Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting

  • Eun, Kiyoung;Ham, Seok Won;Kim, Hyunggee
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.117-125
    • /
    • 2017
  • Most of the cancers are still incurable human diseases. According to recent findings, especially targeting cancer stem cells (CSCs) is the most promising therapeutic strategy. CSCs take charge of a cancer hierarchy, harboring stem cell-like properties involving self-renewal and aberrant differentiation potential. Most of all, the presence of CSCs is closely associated with tumorigenesis and therapeutic resistance. Despite the numerous efforts to target CSCs, current anti-cancer therapies are still impeded by CSC-derived cancer malignancies; increased metastases, tumor recurrence, and even acquired resistance against the anti-CSC therapies developed in experimental models. One of the most forceful underlying reasons is a "cancer heterogeneity" due to "CSC plasticity". A comprehensive understanding of CSC-derived heterogeneity will provide novel insights into the establishment of efficient targeting strategies to eliminate CSCs. Here, we introduce findings on mechanisms of CSC reprogramming and CSC plasticity, which give rise to phenotypically varied CSCs. Also, we suggest concepts to improve CSC-targeted therapy in order to overcome therapeutic resistance caused by CSC plasticity and heterogeneity.

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

High Efficient Energy Recovery Circuit for AC Plasma Display Panel (AC Plasma Display Panel 구동 장치의 고효율 전력 회수 회로에 관한 연구)

  • 윤원식;강필순;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.481-488
    • /
    • 2001
  • The sustaining driver for color AC Plasma Display Panel should provide alternating high voltage pulses and recover the energy discharged from the intrinsic capacitance between the scanning and sustaining electrodes inside the panel In this paper a novel efficient energy recovery circuit employing boost-up function is proposed to achieve a faster rise-time and in order to obtain a stable sustain voltage The principle of operation. features simulated results and experiment results are illustrated and verified on a 7.5-inch-panel with 200[kHz]switch frequency.

  • PDF

Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells

  • Seo, Hyunhyo;Lee, Kyungmin
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.128-133
    • /
    • 2016
  • Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis.