• Title/Summary/Keyword: the regular representation

Search Result 61, Processing Time 0.028 seconds

Design of Low-Latency Architecture for AB2 Multiplication over Finite Fields GF(2m) (유한체 GF(2m)상의 낮은 지연시간의 AB2 곱셈 구조 설계)

  • Kim, Kee-Won;Lee, Won-Jin;Kim, HyunSung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

  • Nowak, Marian
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.177-190
    • /
    • 2015
  • Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X,E)$ be the Banach space of all continuous functions $f:X{\rightarrow}E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T:C_{rc}(X,E){\rightarrow}F$. We characterize continuous operators from $C_{rc}(X,E)$, provided with the strict topologies ${\beta}_z(X,E)$ ($z={\sigma},{\tau}$) to F, in terms of their representing operator-valued measures.

Analysis of the Mathematically Gifted 6th and 7th Graders' Spatial Visualization Ability of Solid Figures (입체도형에 대한 $6{\sim}7$학년 수학영재들의 공간시각화 능력 분석)

  • Ryue, Hyun-A;Chong, Yeong-Ok;Song, Sang-Hun
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.277-289
    • /
    • 2007
  • This research aims to look into the mathematically gifted 6th and 7th graders spatial visualization ability of solid figures. The subjects of the research was six male elementary school students in the 6th grade and one male middle school student in the 1th grade receiving special education for the mathematically gifted students supported by the government. The task used in this research was the problems that compares the side lengths and the angle sizes in 4 pictures of its two dimensional representation of a regular icosahedron. The data collected included the activity sheets of the students and in-depth interviews on the problem solving. Data analysis was made based on McGee's theory about spatial visualization ability with referring to Duval's and Del Grande's. According to the results of analysis of subjects' spatial visualization ability, the spatial visualization abilities mainly found in the students' problem-solving process were the ability to visualize a partial configuration of the whole object, the ability to manipulate an object in imagination, the ability to imagine the rotation of a depicted object and the ability to transform a depicted object into a different form. Though most subjects displayed excellent spatial visualization abilities carrying out the tasks in this research, but some of them had a little difficulty in mentally imagining three dimensional objects from its two dimensional representation of a solid figure.

  • PDF

Design of Heuristics Using Vertex Information in a Grid-based Map (그리드 기반 맵에서 꼭지점 정보를 이용한 휴리스틱의 설계)

  • Kim, Ji-Hyui;Jung, Ye-Won;Yu, Kyeon-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • As computer game maps get more elaborate, path-finding by using $A^*$ algorithm in grid-based game maps becomes bottlenecks of the overall game performance. It is because the search space becomes large as the number of nodes increases with detailed representation in cells. In this paper we propose an efficient pathfinding method in which the computer game maps in a regular grid is converted into the polygon-based representation of the list of vertices and then the visibility information about vertices of polygons can be utilized. The conversion to the polygon-based map does not give any effect to the real-time query process because it is preprocessed offline. The number of visited nodes during search can be reduced dramatically by designing heuristics using visibility information of vertices that make the accuracy of the estimation enhanced. Through simulations, we show that the proposed methods reduce the search space and the search time effectively while maintaining the advantages of the grid-based method.

Development of Fashion Product and 3D Pattern Textile Design through the Three-Dimensional Expression based on Jogakbo in Chosun Dynasty Period (조선시대 조각보의 입체적 표현을 통한 3D패턴 텍스타일 디자인과 패션상품 개발)

  • Heo, Seungyeun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • The purpose of this study is to develop 3D pattern textile design of traditional Jogakbo motifs and fashion products using it. As a research method, first, through literature review, the three-dimensional representation of geometry on a plane with Jogakbo, design cases were examined. Second, through a survey, the purchase perception and design preference of Jogakbo cultural products was analyzed. Third, based on the results of the survey on color and print, the 3D pattern design for each type of Jogakbo is printed, and then textile fashion cultural products were developed. The results of this study are as follows. First, the reason why the public was not attracted to the purchase of cultural products was disatisfaction with practicality, unsuitable preference, price adequacy, aesthetics, and originality. Therefore, it was analyzed that quality, practicality, price, carry-on storage harmony and manageability, as well as aesthetic design were important factors for consumers. Second, the stereoscopic space on the plane expanded the two-dimensional plane space by forming a cube through the division and dissolution of geometry could be visualized using color expression of cubes of different brightness depending on the direction of light. Third, Jogakbo had eight types consisting of four detailed forms and three arrangement methods. The 3D pattern design could be developed through regular disolution and stereoscopic construction using Jogakbo's representative images for each type. In addition, it was found that it was easy to produce Jogakbo fashion products suitable for modern people through 3D pattern digital textile printing applying traditional colors.

A Study on the Validation Test for Open Set Face Recognition Method with a Dummy Class (더미 클래스를 가지는 열린 집합 얼굴 인식 방법의 유효성 검증에 대한 연구)

  • Ahn, Jung-Ho;Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.525-534
    • /
    • 2017
  • The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method

Student Group Division Algorithm based on Multi-view Attribute Heterogeneous Information Network

  • Jia, Xibin;Lu, Zijia;Mi, Qing;An, Zhefeng;Li, Xiaoyong;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3836-3854
    • /
    • 2022
  • The student group division is benefit for universities to do the student management based on the group profile. With the widespread use of student smart cards on campus, especially where students living in campus residence halls, students' daily activities on campus are recorded with information such as smart card swiping time and location. Therefore, it is feasible to depict the students with the daily activity data and accordingly group students based on objective measuring from their campus behavior with some regular student attributions collected in the management system. However, it is challenge in feature representation due to diverse forms of the student data. To effectively and comprehensively represent students' behaviors for further student group division, we proposed to adopt activity data from student smart cards and student attributes as input data with taking account of activity and attribution relationship types from different perspective. Specially, we propose a novel student group division method based on a multi-view student attribute heterogeneous information network (MSA-HIN). The network nodes in our proposed MSA-HIN represent students with their multi-dimensional attribute information. Meanwhile, the edges are constructed to characterize student different relationships, such as co-major, co-occurrence, and co-borrowing books. Based on the MSA-HIN, embedded representations of students are learned and a deep graph cluster algorithm is applied to divide students into groups. Comparative experiments have been done on a real-life campus dataset collected from a university. The experimental results demonstrate that our method can effectively reveal the variability of student attributes and relationships and accordingly achieves the best clustering results for group division.

A Study on Wave Responses of Vertical Tension-Leg Circular Floating Bodies (연직인장계류된 원형부유체의 파랑응답에 관한 연구)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • In the present study, we proposed a new numerical wave tank model to analyze the vertical tension-leg circular floating bodies, using a 2-D Navier-Stokes solver. An IBM(Immersed Boundary Method) capable of handling interactions between waves and moving structures with complex geometry on a standard regular Cartesian grid system is coupled to the VOF(Volume of Fluid) method for tracking the free surface. Present numerical results for the motions of the floating body were compared with existing experimental data as well as numerical results based on FAVOR(Fractional Area Volume Obstacle Representation) algorithm. For detailed examinations of the present model, the additional hydraulic experiments for floating motions and free surface transformations were conducted. Further, the versatility of the proposed numerical model was verified via the numerical and physical experiments for the general rectangular floating bodies. Numerical results were compared with experiments and good agreement was archived.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

On Two-Dimensional Large-Amplitude Motions in Regular Wave (규칙파중에서의 주상체의 대진폭 운동에 관한 연구)

  • Yong-Jig,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.25-31
    • /
    • 1989
  • Two-dimensional large-amplitude motions in regular harmonic wave are treated in time domain, by satisfying the exact body boundary condition and the linear free surface condition. For the present numerical calculation, the method of free-surface spectral representation with simple source distribution on the instantaneous body surface has been extended to include the effect of the incident wave. Calculations of the wave exciting force are performed for a submerged circular cylinder fixed or oscillating with large amplitude. Especially, nonlinear effects on the time-mean forces are studied in detail. It is shown that relative motion between the body and the fluid particle gives a significant effect on the lift and drift forces. Also, large-amplitude motion of a submerged circular cylinder and that of a floating Lewis-form cylinder are directly simulated in time domain. In the calculation results, some nonlinear effects are shown.

  • PDF