• Title/Summary/Keyword: the rate

Search Result 109,411, Processing Time 0.094 seconds

Influence of Temperature and Humidity on Pregnancy Rate of Murrah Buffaloes under Subtropical Climate

  • Dash, Soumya;Chakravarty, A.K.;Sah, V.;Jamuna, V.;Behera, R.;Kashyap, N.;Deshmukh, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.943-950
    • /
    • 2015
  • Heat stress has adverse effects on fertility of dairy animals. Decline in fertility is linearly associated with an increase in combination of both temperature and humidity. The purpose of this study was to investigate the relationship between temperature humidity index (THI) and the pregnancy rate of Murrah buffaloes in a subtropical climate. The effects of genetic and non-genetic factors viz., sire, parity, period of calving and age group at first calving were found non-significant on pregnancy rate. The effect of THI was found significant (p<0.001) on pregnancy rate of Murrah buffaloes calved for first time and overall pregnancy rate. The threshold THI affecting the pregnancy rate was identified as THI 75. The months from October to March showed THI<75 and considered as non heat stress zone (NHSZ), while months from April to September were determined as heat stress zone (HSZ) with $THI{\geq}75$. The lowest overall pregnancy rate (0.25) was obtained in July with THI 80.9, while the highest overall pregnancy rate (0.59) was found in November with THI 66.1. May and June were identified as critical heat stress zone (CHSZ) within the HSZ with maximum decline (-7%) in pregnancy rate with per unit increase in THI. The highest overall pregnancy rate was estimated as 0.45 in NHSZ with THI value 56.7 to 73.2. The pregnancy rate was found to have declined to 0.28 in HSZ with THI 73.5 to 83.7. However, the lowest pregnancy rate was estimated as 0.27 in CHSZ with THI value 80.3 to 81.6.

Optimal Periodic Preventive Maintenance with Improvement Factor (개선지수를 고려한 주기적 예방보전의 최적화에 관한 연구)

  • Jae-Hak Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.193-204
    • /
    • 2003
  • In this paper, we consider a periodic preventive maintenance(PM) policy in which each PM reduces the hazard rate but remains the pattern of hazard rate unchanged. And the system undergoes only minimal repairs at failures between PM's. The expected cost rate per unit time is obtained. The optimal number N of PM and the optimal period x, which minimize the expected cost rate per unit time are discussed. Explicit solutions for the optimal periodic PM are given for the Weibull distribution case.

ON CHARACTERIZATIONS OF THE POWER DISTRIBUTION VIA THE IDENTICAL HAZARD RATE OF LOWER RECORD VALUES

  • Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.337-340
    • /
    • 2017
  • In this article, we present characterizations of the power distribution via the identical hazard rate of lower record values that $X_n$ has the power distribution if and only if for some fixed n, $n{\geq}1$, the hazard rate $h_W$ of $W=X_{L(n+1)}/X_{L(n)}$ is the same as the hazard rate h of $X_n$ or the hazard rate $h_V$ of $V=X_{L(n+2)}/X_{L(n+1)}$.

Reliability and responsiveness of Equivital Lifemonitor and photoplethysmography based wristwatch for the assessment of physiological parameters during a simulated fatigue task

  • Anwer, Shahnawaz;Li, Heng;Umer, Waleed;Antwi-Afari, Maxwell Fordjour;Wong, Arnold YL
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.257-264
    • /
    • 2020
  • Objective: To investigate test-retest reliability and responsiveness of Equivital Lifemonitor and photoplethysmography based wristwatch tools in assessing physiological parameters during a simulated fatigue task. Methods: Ten university students (Mean age, 30.6 ± 1.7 years) participated in this pilot study. Participants were asked to perform a 30-minute of a simulated fatigue task in an experimental setup in a lab. The physiological parameters (e.g., heart rate, heart rate variability, respiratory rate, electrodermal activity, and skin temperature) were measured at baseline and immediately after the fatigue task. An intraclass correlation coefficient (ICC2,1) was used to evaluate the test-retest reliability of each tool in assessing physiological measures. In addition, the responsiveness of each tool to measure changes from baseline to posttest was calculated using a standardized response mean. Results: The Equivital Lifemonitor has shown good to excellent test-retest reliability for the assessment of heart rate (ICC, 0.97), heart rate variability (ICC, 0.86), respiratory rate (ICC, 0.77), and local skin temperature (ICC, 0.76). However, photoplethysmography based wristwatch showed moderate to good test-retest reliability for the assessment of heart rate (ICC, 0.71), heart rate variability (ICC, 0.73), electrodermal activity (ICC, 0.80), and skin temperature (ICC, 0.72). A large standardized response mean (>0.8) indicates that both tools can capture the changes in heart rate, heart rate variability, respiratory rate, skin temperature, and electrodermal activity after a 30-minute of fatigue task. Conclusions: The Equivital Lifemonitor and photoplethysmography based wristwatch devices are reliable in measuring physiological parameters after the fatigue task. Additionally, both devices can capture the fatigue response after a simulated construction task. Future field studies with a larger sample should investigate the sensitivity and validity of these tools in measuring physiological parameters for fatigue assessment at construction sites.

  • PDF

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

ON THE BACKGROUND-SUBTRACTED INTENSITY (백그라운드 제거후 신호의 세기에 대하여)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.109-116
    • /
    • 2005
  • When we measure a source signal in the presence of a background rate that has been independently measured, the usual approach is to obtain an estimate of the background rate by observing an empty part of the sky, and an estimate of the source signal plus background rate by observing the region where a source signal is expected. The source signal rate is then estimated by subtracting the background rate from the source signal plus background rate. However, when the rates or their observation times are small, this procedure can lead to negative estimates of the source signal rate, even when it should produce a positive value. By applying the Bayesian approach, we solve the problem and prove that the most probable value of source signal rate is zero when the observed total count is smaller than the expected background counts. It is also shown that the results from the conventional method is consistent with the most probable value obtained from the Bayesian approach when the source signal is large or the observation time is long enough.

A Study of Thermal Performance Evaluation Index for Building (건물의 열성능 평가 지표에 관한 연구)

  • Kim, Mi-Hyun;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This study intends to the adequacy inspection of the room temperature variation rate that is available in the building heat performance evaluation index, so we performed the sensitivity analysis about the room temperature variation rate and the energy consumption in the room. For these purpose, we supposed the models which are composed of the various window area, insulation thickness and ventilation rate. Then we analyzed the simulation using the ESP-r and Seoul weather data. In this research, the pattern of the increasing & decreasing rate of annual load according to the change of the various design factors is similar to the pattern of increasing & decreasing rate of not the K-values but the room temperature variation rate. Also we derive the optimum value of the various design factors and the room temperature variation rate in this analysis model. Further study is to be required the development of convenient tool to use in the real design.

A Development of the DIRCM Effectiveness Analysis Simulator based on DEVS (DEVS 기반 DIRCM 효과도 분석 시뮬레이터 개발)

  • Shin, Baek-Cheon;Hur, Jang-Wook;Kim, Tag-Gon;Kim, Mi-Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • we analyzed simulation of the effectiveness for one or two DIRCM on a helicopter. The survival rate of helicopter followed increase of the deception rate of DIRCM. When the deception rate was over 70% at 100% detection rate, the survival rate was 10~30% when one DIRCM was installed and the survival rate was 70~80% when two DIRCMs were installed. When the detection rate was over 70% at 100% deception rate the survival rate was 10~30% case of one DIRCM was installed. survival rate was 20~30% when two were installed. Survival rate of 70~90% was observed with one DIRCM when the deception rate and detection rate were 100%, and 100% with two DIRCMs.

A Rate Separating Multi-Channel Protocol for Improving Channel Diversity and Node Connectivity in IEEE 802.11 Mesh Networks (IEEE 802.11 메쉬 네트워크에서 채널 다양성과 노드 연결성 향상을 위한 레이트 분할 멀티 채널 프로토콜)

  • Kim, Sok-Hyong;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1152-1159
    • /
    • 2010
  • Wireless Mesh Networks (WMNs) provides Internet accesses to users by forming backbone networks via wireless links. A key problem of WMN is network capacity. For this, multi-channel and multi-rate functions of IEEE 802.11 can be utilized. Depending on channel assignments, multi-channel determines node connectivity and channel diversity. Also, in IEEE 802.11 multi-rate networks, the rate anomaly problem occurs, the phenomenon that low-rate links degrades the performance of high-rate links. In this paper, we propose rate separating multi-channel (RSMC) protocols that improves the node connectivity and channel diversity, and mitigates the rate anomaly problem. RSMC increases the channel diversity by forming tree-based WMNs and decreases the rate anomaly by separating different rate links on the tree via channels. In addition, it uses network connectivity (NC) algorithm to increase the node connectivity. Through simulations, we demonstrate that the RSMC shows improved performance than existing multi-channel protocols in terms of aggregate throughput, node connectivity, channel diversity.

Quantitative Interpretation of Cooling Rate of Clinker and It's Effects on the Cement Strength Development (클링커 냉각속도의 정량적 해석 및 냉각속도가 시멘트 강도발현에 미치는 영향고찰)

  • Kim, Chang-Bum;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.224-229
    • /
    • 2007
  • To evaluate the cooling rate of clinker quantitatively, several clinkers with different cooling rate were made in the laboratory. The X-ray diffraction pattern of Ferrite 002 reflection were measured and the parameters were calculated by using split type pseudo-Voigt function. The X-ray diffraction patterns of the Ferrite phase in the clinkers from cement manufacturing plant were analyzed by using the parameters and the analysis program was developed to calculate the cooling rate quantitatively. The cooling rate coefficients of the clinkers were calculated by using the profile fitting method of the program and the influence of cooling rate on strength was evaluated. The results show that there is a close relation between the cooling rate of clinker and the strength of cement.