Reliability and responsiveness of Equivital Lifemonitor and photoplethysmography based wristwatch for the assessment of physiological parameters during a simulated fatigue task

  • Anwer, Shahnawaz (Department of Building and Real Estate, Hong Kong Polytechnic University) ;
  • Li, Heng (Department of Building and Real Estate, Hong Kong Polytechnic University) ;
  • Umer, Waleed (Department of Construction Engineering and Management, King Fahd University of Petroleum and Minerals) ;
  • Antwi-Afari, Maxwell Fordjour (Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University) ;
  • Wong, Arnold YL (Department of Rehabilitation Sciences, Hong Kong Polytechnic University)
  • Published : 2020.12.07

Abstract

Objective: To investigate test-retest reliability and responsiveness of Equivital Lifemonitor and photoplethysmography based wristwatch tools in assessing physiological parameters during a simulated fatigue task. Methods: Ten university students (Mean age, 30.6 ± 1.7 years) participated in this pilot study. Participants were asked to perform a 30-minute of a simulated fatigue task in an experimental setup in a lab. The physiological parameters (e.g., heart rate, heart rate variability, respiratory rate, electrodermal activity, and skin temperature) were measured at baseline and immediately after the fatigue task. An intraclass correlation coefficient (ICC2,1) was used to evaluate the test-retest reliability of each tool in assessing physiological measures. In addition, the responsiveness of each tool to measure changes from baseline to posttest was calculated using a standardized response mean. Results: The Equivital Lifemonitor has shown good to excellent test-retest reliability for the assessment of heart rate (ICC, 0.97), heart rate variability (ICC, 0.86), respiratory rate (ICC, 0.77), and local skin temperature (ICC, 0.76). However, photoplethysmography based wristwatch showed moderate to good test-retest reliability for the assessment of heart rate (ICC, 0.71), heart rate variability (ICC, 0.73), electrodermal activity (ICC, 0.80), and skin temperature (ICC, 0.72). A large standardized response mean (>0.8) indicates that both tools can capture the changes in heart rate, heart rate variability, respiratory rate, skin temperature, and electrodermal activity after a 30-minute of fatigue task. Conclusions: The Equivital Lifemonitor and photoplethysmography based wristwatch devices are reliable in measuring physiological parameters after the fatigue task. Additionally, both devices can capture the fatigue response after a simulated construction task. Future field studies with a larger sample should investigate the sensitivity and validity of these tools in measuring physiological parameters for fatigue assessment at construction sites.

Keywords

Acknowledgement

The authors acknowledged the following two funding grants: 1. General Research Fund (GRF) Grant (BRE/PolyU 152047/19E) entitled "In Search of a Suitable Tool for Proactive Physical Fatigue Assessment: An Invasive to Non-invasive Approach"; and 2. General Research Fund (GRF) Grant (BRE/PolyU 15210720) entitled "The development and validation of a noninvasive tool to monitor mental and physical stress in construction workers".