• Title/Summary/Keyword: the property (C)

Search Result 4,363, Processing Time 0.037 seconds

Fabrication and Property of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Hollow Fiber Membranes (Ba0.5Sr0.5Co0.8Fe0.2O3-δ 중공사 분리막의 제조 및 물성)

  • Jeon, Sung Il;Park, Jung Hoon;Kim, Jong Pyo;Sim, Woo Jong;Lee, Yong Taek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber with o.d. 1.02 mm and i.d. 0.437 mm were fabricated by a phase-inversion spinning technique.The starting $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ precursor was synthesized by the polymerized complex method and then calcined at $900^{\circ}C$. As-prepared powder was dispersed in a polymer solution, and extruded as form of hollow fiber through a spinneret. Finallydense $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber membrane was obtained by sintering for 2 h at $1,080^{\circ}C$ for the application of oxygen separation. In addition, despite a very thin membrane with 0.58 mm, the BSCF hollow fiber membrane possessed a proper mechanical strength of 602.5 MPa.

Activation Property of Blast furnace Slag by Alkaline Activator (알칼리 자극제에 의한 고로수쇄슬래그의 활성화 특성)

  • Ahn, Ji-Whan;Cho, Jin-Sang;Kim, Hyung-Seok;Han, Gi-Chun;Han, Ki-Suk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.1005-1014
    • /
    • 2003
  • This paper examines the hydration and physical properties of alkali-blast furnace slag cement activated by Na$_2$SiO$_3$, Na$_2$CO$_3$, NaOH, Na$_2$SO$_4$. Four levels of Na$_2$O content in mixtures, 1, 3, 5, and 7 wt%, were investigated, and a W/S ratio 0.5 was used to prepare paste and mortar specimens. Compressive strength measurement of mortars was carried out adding alkali activated slag 30 wt% to OPC. The main hydration products with alkali activator kinds were C-S-H,C$_4$AH$\_$13/, AFt and Al(OH)$_3$ etc. For using Na$_2$CO$_3$ activated slag, hydration ratio of slag was higher than that of different activators, and Na$_2$SO$_4$ activated slag mortar appeared the highest compressive strength values at 28 days with activator content of 5 and 7 wt%.

[ $LaNbO_4$ ] : X (X = Bi, Eu)형광체의 발광 및 저 전압 음극선 발광 특성 (Photoluminescent and low voltage cathodoluminescent properties of $LaNbO_4$ : X (X = Bi, Eu) phosphors)

  • On Ji-Won;Kim Youhyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • Rare-earth niobates, ag (Ln = Y, La, Gd) are well-known self-activated phosphors due to charge transfer in $NbO^{3-}_4$ showing a broad and strong emission band in the spectral region around 410 nm. In order to find new blue and red phosphors for FED, $LaNbO_4$ : X (X = Bi, Eu) phosphors are prepared through solid-state reactions at high temperature. The optimum reaction condition for these phosphors to give maximum emission intensity is obtained when it is first fired at $1250^{\circ}C$ for 2 h followed by second firing at $1400^{\circ}C$ for 1 h. Under irradiation at 254 nm, $1mol\%\;Bi^{3+}$ doped $LaNbO_4$ phosphor shows strong blue emission band with a range of $420\~450nm$. Also $10mol\%\;Eu^{3+}$ doped $LaNbO_4$ phosphor shows the maximum emission intensity at about 610 nm. Emission peaks at $415\~460nm$, $530\~560nm$and $570\~620nm$are observed in phosphors below $10mol\%\;Eu^{3+}$ doped $LaNbO_4$. Similar results are obtained in cathodoluminescent property of these phosphors.

Influence of Alumina Slurry Composition on Mechanical Properties of Green Tapes (알루미나 슬러리 조성에 따른 그린 테이프의 기계적 특성)

  • Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2002
  • Alumina slurriers, having various amount of alumina and ratio of organic additives, were prepared for tape casting. The relative viscosities were compared to investigate influence of composition on stability of the slurry and plotted as a function of powder fraction. They raised with increasing powder fraction of slurries, revealing a exponential function curve, which means that stability of slurry was not affected by amount and composition of organic additives. Cast green tapes were tested under tensile condition at room temperature. The increase in alumina ratio and binder ratio was found to decrease strain to failure of green tapes from 363% to 45% and from 68% to 25%, respectively. Tensile strength of green tapes increased abruptly with increasing alumina ratio, which showed its maximum at 1 MPa. On other hand, Tensile strength increased continuously from 0.5 MPa to 4 MPa with increasing binder ratio. Mechanical properties of them were affected seriously and lost their properties by elevating temperature from 20$^{\circ}C$ to 80$^{\circ}C$.

A Study for Drying of Sewage Sludge through Immersion Frying Using Used Oil (폐유를 이용한 하수슬러지 유중 건조 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon;Ohm, Tae-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.694-699
    • /
    • 2008
  • Considering the severe regulation associated with sludge treatment such as direct landfill and ocean dumping, there is no doubt in that an advanced study for the proper treatment of sludge is urgently needed in near feature. As one of viable method for sludge treatment, fry-drying of sludge by waste oil has been investigated in this study. The fundamental mechanism of this drying method lies in the phenomenon of rapid moisture escape in the sludge pore toward oil media. This is caused by the severe pressure gradient formed by the rapid oil heating between sludge and oil. As part of research effort of fry-drying using waste oil, a series of basic study has been made experimentally to obtain typical drying curves as function of important parameters such as drying temperature, drying time, oil type and geometrical shape of sludge formed. Based on this study, a number of useful conclusion can be drawn as following. The fry-drying method by oil immersion was found quite effective in the removal efficiency of sludge moisture, in general, the moisture content decreases significantly after 10 minutes and the whole moisture content was less than 5% after 14 minutes regardless of the drying temperature. The increase of oil temperature up to 140$^{\circ}C$ favors significantly for the removal of moisture but there was no visible difference above 140$^{\circ}C$. As expected, the decrease of diameter in sludge was efficient in drying due to the increased surface area per unit volume. Further, the effect of oil property by the change of oil type was noted. To be specific, for the case of engine oil the efficiency was found to be remarkably delayed in moisture evaporation compared with that of vegetable oil due to the increased viscosity of engine oil. It produced a result of increasing the evaporation of moisture largely relatively high in the drying temperature over 140$^{\circ}C$ compared with the drying temperature 120$^{\circ}C$ drying temperature as the drying time passed. Accordingly, the drying temperature is considered desirable as keeping over 140$^{\circ}C$ regardless of a sort of used oil.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

Influence of Blue-Emission Peak Wavelength on the Reliability of LED Device (청색 피크 파장이 LED 소자에 미치는 영향)

  • Han, S.H.;Kim, Y.J.;Kim, J.H.;Jung, J.Y.;Kim, H.C.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.164-170
    • /
    • 2012
  • The dependance of degradation on the blue-peak wavelength is investigated with the blue light-emitting diode (LED) of InGaN/GaN with respect to the optical and the electrical characteristics of the devices. The LED devices emitting the blue-peak wavelength ranging from 437 nm to 452 nm is prepared to be stressed for a long aging time with three different currents of 60 mA, 75 mA and 90 mA, respectively. The degradation of optical intensity is observed with and without phosphor in the devices. The device without phosphor has been degraded significantly as the wavelength of blue-peak is decreased while the optical intensity of LED device with phosphor become less sensitive than that of device without phosphor. The electrical property does not depend on the emission peak wavelength. However, the series-resistance of LED device is slowly increased as the aging time is increased. The deformation of device is observed severely the short wavelength of blue-peak even with the same current since the short wavelength is absorbed substantially at the materials of device during the aging time. Consequently, in order to enhance the lifetime of LED devices, it is important to understand the optical degradation property of the materials against the specific wavelengths emitted from the blue chip.

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF