• Title/Summary/Keyword: the optimum cross-section design

Search Result 114, Processing Time 0.033 seconds

The Section Optimization of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 단면최적화)

  • 노금래;김만철;박선규;이인원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF

A Study on the Principal Factors of Rail Tunnel Cross-Section Design due to High Speed (고속화에 따른 철도터널의 단면규모 결정요소에 대한 고찰)

  • Ryu, Dong-Hun;Lee, Hyeon-Jeong;Han, Sang-Yeon;Shin, Hyon-Il;Jung, Byung-Ryul;Song, Chung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1487-1501
    • /
    • 2011
  • Recently, fast-growing up railway transportations. Because, regional traffic congestion problem solving and a period of rapid expansion to meet the demand of industries. In addition the government also suggest to new paradigm for the future 'Low Carbon, Green Growth' is presented as a new national vision. To meet the social needs and the time demands, Last of the railway increase very long tunnels and huge deep tunnels. Especially this trend accelerated high speed up in the tunnel, the revision of design criteria and research challenges are being actively improved. Mainly in the tunnel cross-section was under the control of the vehicle train speed 150km/hr by the construction of the vehicle cross-section of the tunnel. More than 200km/hr rail tunnel depending on the vehicle's speed caused the tunnel to the pressure fluctuations will be governed by the aerodynamic changes. Considering the economy to ensure the optimum cross-section of the railway tunnel to the description scheme is selected cross-section of the railway tunnel to determine the size domestic or international railway tunnel for the elements((based on fast Algorithm design criteria, the center line spacing, streetcar line, cross-sectional shape, sectoral issues, such as interface and aerodynamics) based on design practices and to review results. In this study, to propose guidelines depending on the size of a railway tunnel cross section for the size of the determining reasonable factors when designing the railway tunnel and cost-effective standards guidelines.

  • PDF

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.

Formability of deep drawing process for reentrant cross section (오목형 단면 딥드로잉에서의 성형성)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.138-144
    • /
    • 1996
  • The differences of formability with maximum cup depth of drawn product and thickness strain distribution are compared for two kinds of blank shapes which are suggested optimum shape and conventional square shape. The suggested blank is determined by backward tracing technique of rigid-plastic FEM. The deeper cup without wrinkle and flange part could be obtained from the suggested blank shape however the cross sevtion sup from the square blank could not be kept smooth thickness strain distribution and defended those phenomena..

  • PDF

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

A study on the optimum cross-section design that satisfies the criteria of aural discomfort in Honam high speed railway tunnel (이명감 특성을 고려한 호남고속철도 터널단면 설정에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.19-36
    • /
    • 2007
  • When the trains runs at a high speed in the tunnel, passengers feel a pain in the ear that fast pressure fluctuation inside the tunnel being delivered with pressure fluctuation inside the passenger car. These phenomena are called "aural discomfort". Aural discomfort increase the passengers' uncomfort so that it is decreased a service level and serious case, it is able to damage the ear of the passenger. therefore aural discomfort must be considered the high-speed railroad tunnel cross-section design. To solve the problem of aural discomfort in a railway tunnel, some countries have standards on aural discomfort. It has been studied that different countries have different standards on aural discomfort. For that reason, the criteria of aural discomfort was reviewed through the standards of Kyungbu HSR line and different countries in this paper. And then Numerical Analysis of the Characteristics with tunnel cross-section change has been used for the selection of the optimum cross-section of Honam. The numerical analysis results were compared to field test results in order to verifying the reliability of the numerical analysis.

  • PDF

A Study on the Structural Performance and the Design of Propeller Root Fillet Surfaces having nT-T/n section (nT-T/n 단면형상을 갖는 프로펠러 뿌리 필렛의 구조 성능 분석과 설계방안에 관한 연구)

  • Ruy, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.372-379
    • /
    • 2015
  • The blade root fillets which have strong influences on the performance of propellers in the both structural and hydrodynamic points of view, are mechanical parts for smooth connection surface with a blade and a hub. A few related researches (Sabol, 1983; Kennedy, 1997) have noted that 3T-T/3 double radius section design would be suitable for reducing Stress Concentration Factor(SCF) and increasing Cavitation Inception Speed(CIS). In this paper, it is confirmed that this compound cross-section design has come close to the optimum solution in the shape optimization standpoint so that it could protect the propeller blade under the frequent and various loading cases. On that basis, we suggest the definite and simple fillet design methodology that has the cross-section with nT-T/n compound radius and elliptic shape which could sustain the given derivatives information as well as the offsets at the boundary and all inner region of the fillet surface. In addition, the result of design is presented in form of IGES file format in order to connect with NC machine seamlessly.

A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System (MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용)

  • 권영주;방혜철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

Analysis and Optimization of Composite Links (복합재료 링크의 해석 및 최적화)

  • 김수현;강지호;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.103-107
    • /
    • 2003
  • The objective of this thesis is to develop the optimal design of composite links containing complicated cross-section. To accomplish this objective, a composite links structural analysis program was developed. The method of calculating effective modulus of composite beam containing complicated cross-section is proposed. Genetic algorithm was implemented for the optimization method to manipulate the discrete ply angles as the design variables and to utilize its high reliability to find the global optimum. The design variables were the number of plies, the fiber orientations and the stacking sequence. The optimal design of composite links was performed by genetic algorithm to minimize the weight of the structure and to constrain ply failure

  • PDF

The Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure Including the Number of Stiffener (보강재의 수를 포함한 보강판 구조물의 동특성의 최적변경)

  • 박성현;고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.461-469
    • /
    • 2001
  • The purpose of this paper is the optimum modification of dynamic characteristics of stiffened plate structure including the number of stiffener. This paper shows the optimum structural modification method by dynamic sensitivity analysis and quasi-least squares method and considers it's validity. In the method of the optimization, finite element method, sensitivity analysis and optimum structural modification method are used. The change of natural frequency and total weight are made to be an objective function. Thickness of plate, the number of stiffener and cross section moment of stiffener become a design variable. The dynamic characteristics of stiffened plate structure is analyzed using finite element method. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using optimum structural modification method. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure including the number of stiffener.

  • PDF