Browse > Article
http://dx.doi.org/10.12989/sem.2019.71.2.119

Simplified method to design laterally loaded piles with optimum shape and length  

Fenu, Luigi (Department of Civil & Environment Engineering and Architecture, University of Cagliari)
Briseghella, Bruno (College of Civil Engineering, Fuzhou University)
Marano, Giuseppe Carlo (College of Civil Engineering, Fuzhou University)
Publication Information
Structural Engineering and Mechanics / v.71, no.2, 2019 , pp. 119-129 More about this Journal
Abstract
Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.
Keywords
Winkler's soil; FSD method; laterally loaded piles; optimum shape and length; specific constants; simplified design;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ashour, M. and Norris, G. (2000), "Modelling lateral soil-pile response based on soil-pile interaction", J. Geotech. Geoenviron. Eng., 126(5), 420-428. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420).   DOI
2 Bartholomew, P. and Morris, A.J. (1976), "A unified approach to fully-stressed design", Eng. Opt., 2(1), 3-15. https://doi.org/10.1080/03052157608960592.   DOI
3 Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).   DOI
4 Bowles, J.E. (1996), Foundation Analysis and Design, 5th edition, McGraw-Hill, New York, NY, USA.
5 Briseghella, B., Fenu, L., Feng, Y., Lan, C., Mazzarolo, E. and Zordan, T. (2016), "Optimization Indexes to Identify the Optimal Design Solution", J. Bridge Eng., 21(3), https://doi.org/10.1061/(ASCE)BE.1943-5592.0000838.
6 Briseghella, B. and Zordan T. (2007), "Integral abutment bridge concept applied to the rehabilitation of a simply supported concrete structure", Struct. Concr., 8(1), 25-33.   DOI
7 Briseghella, B. and Zordan T. (2015), "An innovative steelconcrete joint for integral abutment bridges", J. Traff. Transp. Eng. (English Ed.), 2(4), 209-222. https://doi.org/10.1016/j.jtte.2015.05.001.   DOI
8 Briseghella, B., Fenu, L., Feng, Y., Mazzarolo, E. and Zordan, T. (2013). "Topology optimization of bridges supported by a concrete shell", Struct. Eng. Int., 23(3), 285-294.   DOI
9 Briseghella, B., Fenu, L., Lan, C., Mazzarolo, E. and Zordan, T. (2013). "Application of topological optimization to bridge design", J. Bridge Eng., 18(8), 790-800. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000416.   DOI
10 Broms, B.B. (1964), "Lateral resistance of piles in cohesion less soils", ASCE, J. Soil Mech. and Found. Div., 90(3), 123-158.   DOI
11 Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", ASCE, J. of the Soil Mech. and Found. Div., 90(2), 27-64.   DOI
12 Brown, D.A. and Shie, C.F. (1990), "Three dimensional finite element model of laterally loaded piles", Comp. Geotech., 10(1), 59-79. https://doi.org/10.1016/0266-352X(90)90008-J.   DOI
13 Caner, A. and Zia, P. (1998), "Behavior and design of link slabs for jointless bridge decks", PCI journal, 43, 68-81   DOI
14 Carbonari, S., Morici, M., Dezi, F., Leoni, G., Nuti, C., Silvestri, F., Tropeano, G. and Vanzi, I. (2012), "Seismic response of viaducts accounting for soil-structure interaction", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
15 Chik, K.H., Abbas, J.M. and Taha, M.R. (2008), "Single pile simulation and analysis subjected to lateral load", Electronic J. of Geotech. Eng., 13.
16 David, T.K. and Forth, J.P. (2011), "Modelling of soil structure interaction of integral abutment bridges", J. Civil. Eng. Struct. Construct. Architect. Eng., 5(6), 645-650.
17 Davisson, M.T. (1970), "Lateral Load Capacity of Piles", 49th Annual Meeting of the Highway Research Board, Washington, D.C., U.S.A., January. 104-112.
18 Elsgolts, L.E. (1980), Differential Equations and the Calculus of Variations, (English Edition), MIR Publishers, Moscow, USSR.
19 Fenu, L. and Madama G. (2006), "Pali multiton caricati lateralmente e con spostamento minimo", Proceedings of the 16-th CTE Conference, Parma, Italy, November.
20 Fenu, L. and Serra, M. (1995), "Optimum design of beams surrounded by a Winkler's medium", Struct. Opt., 9(2), 132-135. https://doi.org/10.1007/BF01758831.   DOI
21 Fenu, L., Briseghella, B. and Marano G.C. (2018), "Optimum shape and length of laterally loaded piles", Struct. Eng. Mech., 68(1), 121-130. https://doi.org/10.12989/sem.2018.68.1.121.   DOI
22 Fiore, A., Marano, G.C., Greco, R. and Mastromarino, E. (2016), "Structural optimization of hollow-section steel trusses by differential evolution algorithm", J. Steel Struct., 16(2), 411-423. https://doi.org/10.1007/s13296-016-6013-1.   DOI
23 Gandomi, A.H. and Alavi, A.H. (2012), "A new multi-gene genetic programming approach to non-linear system modelling. Part II: Geotechnical and earthquake engineering problems", Neural Comput. Applic., 21, 189-201. https://doi.org/10.1007/s00521-011-0735-y.   DOI
24 Greco, R., Lucchini, A. and Marano, G.C. (2015), "Robust design of tuned mass dampers installed on multi-degree-of-freedom structures subjected to seismic action", Eng. Opt., 47(8), 1009-1030. https://doi.org/10.1080/0305215X.2014.941288.   DOI
25 Greco, R. and Marano, G.C. (2015), "Identification of parameters of Maxwell and Kelvin-Voigt generalized models for fluid viscous dampers", JVC/J. Vib. Control, 21(2), 260-274. https://doi.org/10.1177/1077546313487937.   DOI
26 Greco, R., Marano, G.C. and Fiore, A. (2016), "Performance-cost optimization of Tuned Mass Damper under low-moderate seismic actions", Struct. Design Tall Special Build., 25(18), 1103-1122. https://doi.org/10.1002/tal.1300.   DOI
27 Haftka, R.T. and Gurdal, Z. (1993), Elements of Structural Optimization, Kluwer Academic Publishers, Dordrecht, Boston, London.
28 Han, J. and Frost, J.D. (2000), "Load-deflection response of transversely isotropic piles under lateral loads", Int. J. for Num. and Anal. Meth. in Geomech., 24(5), 509-529.   DOI
29 Juirnarongrit, T. and Ashford, S.A. (2004), "Lateral load behaviour of cast-in-drilled-hole piles in weakly cemented sand", Transp. Res. Record. J. Transp. Res. Board, 1868, 190-198. https://doi.org/10.3141/1868-20.   DOI
30 Imancli, G., Kahyaoglu, M.R., Ozden, G., and Kayalar, A.S. (2009), "Performance functions for laterally loaded single concrete piles in homogeneous clays", Struct. Eng. Mech., 33(4), 529-537. http://doi.org/10.12989/sem.2009.33.4.529.   DOI
31 Kavitha, P.E., Beena, K.S. and Narayanan, K.P. (2016), "A review on soil-structure interaction analysis of laterally loaded piles", Innov. Infrastruct. Solut. 1(14). https://doi.org/10.1007/s41062-016-0015-x.
32 Kim, W. and Laman, J.A. (2013), "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Struct. Eng. Mech., 46(1), 53-73. https://doi.org/10.12989/sem.2013.46.1.053.   DOI
33 Kim, W., Laman, J.A. and Park, J.Y. (2014), "Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects", Struct. Eng. Mech., 50(3), 305-322. https://doi.org/10.12989/sem.2014.50.3.305.   DOI
34 Kim, Y. and Jeong, S. (2011), "Analysis of soil resistance on laterally loaded piles based on 3d soil-pile interaction", Comp. Geotech., 2, 248-257. https://doi.org/10.1016/j.compgeo.2010.12.001.
35 Kok, S.T. and Huat B.B.K. (2008) "Numerical modelling of laterally loaded piles", American J. Appl. Sc., 5(10), 1403-1408.   DOI
36 Krishnamoorthy, A. and Sharma, K.J. (2008), "Analysis of single and group of piles subjected to lateral load using finite element method", Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, October. 3111-3116.
37 Marano, G.C., Greco, R., Quaranta, G., Fiore, A., Avakian, J. and Cascella, D. (2013), "Parametric identification of nonlinear devices for seismic protection using soft computing techniques", Adv. Mat. Res., 639-640(1) 118-129. https://doi.org/10.4028/www.scientific.net/AMR.639-640.118.
38 Lan, C., Briseghella, B., Fenu, L., Xue, J. and Zordan, T. (2017), "The optimal shapes of piles in integral abutment bridges", J. Traff. Transp. Eng. (English. Ed.), 4(6), 576-593. https://doi.org/10.1016/j.jtte.2017.11.001.   DOI
39 Lavorato, D., Nuti, C., Santini, S., Briseghella, B. and Xue, J. (2015), "A repair and retrofitting intervention to improve plastic dissipation and shear strength of Chinese RC bridges", IABSE Conference, Geneva 2015: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September. 1762-1767.
40 Marano, G.C. and Greco, R. (2011), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", JVC/J. Vibration and Control, 17(5), 679-688.   DOI
41 Marano, G.C., Trentadue, F. and Petrone, F. (2014). "Optimal arch shape solution under static vertical loads", Acta Mechanica, 225(3), 679-686. https://doi.org/10.1007/s00707-013-0985-0.   DOI
42 Marano, G.C., Trentadue, F. and Greco, R. (2006), "Optimum design criteria for elastic structures subject to random dynamic loads", Eng. Optimization, 38(7), 853-871. https://doi.org/10.1080/03052150600913028.   DOI
43 Marano, G.C., Trentadue, F. and Greco, R. (2007), "Stochastic optimum design criterion of added viscous dampers for buildings seismic protection", Struct. Eng. Mech., 25(1), 21-37. https://doi.org/10.12989/sem.2007.25.1.021.   DOI
44 McGann, C.R. and Arduino, P. (2011), Laterally-Loaded Pile Foundation; OpenSeesWiki. http://opensees.berkeley.edu/wiki/index.php/Laterally-Loaded_Pile_Foundation.
45 Nakhaee, M. and Johari, A. (2013), "Genetic based modelling of undrained lateral load capacity of piles in cohesion soils", Global J. Sci. Eng. Technology, 5, 123-133.
46 Xu, Z., Chen, B., Zhuang, Y., Tabatabai, H. and Huang, F. (2017), "Rehabilitation and retrofitting of a multispan simply-supported adjacent box girder bridge into a jointless and continuous structure", J. Performance Construct. Facilities, 32(1), https://doi.org/10.1061/(ASCE)CF.1943-5509.0001107.
47 Yang, Z. and Jeremic, B. (2002), "Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils", J. Numer. Analyt. Methods Geo. Mech., 26(14), 1-31. https://doi.org/10.1002/nag.250.   DOI
48 Zordan, T. and Briseghella, B. (2007), "Attainment of an integral abutment bridge through the refurbishment of a simply supported structure", Struct. Eng. Int., 17(3), 228-234. https://doi.org/10.2749/101686607781645824.   DOI
49 McGann, C.R., Arduino, P. and Mackenzie-Helnwein, P. (2011), "Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil", J. Geotech. Geoenviron. Eng., 137(6), 557-567. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000468.   DOI
50 Myskis, A.D. (1979), Advanced Mathematics for Engineers, (English Edition), MIR Publishers, Moscow, USSR.
51 Ng, K.W., Garder J. and Sritharan, S. (2015), "Investigation of ultra high performance concrete piles for integral abutment bridges", Eng. Str., 105, 220-230. https://doi.org/10.1016/j.engstruct.2015.10.009.   DOI
52 Palmer, L.A. and Thompson, J.B. (1948), "The earth pressure and deflection along the embedded lengths of piles subjected to lateral thrusts", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands. June.
53 Patnaik, S.N. and Hopkins, D.A. (1998), "Optimality of a fully stressed design", Comp. Methods Appl. Mech. Eng., 165(1-4), 215-221.   DOI
54 Phanikanth, V.S., Choudhury, D. and Rami Reddy, G. (2010), "Response of single pile under lateral loads in cohesion less soils", Electronic J. Geotech. Eng., 15.
55 Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley and Sons, Inc., New York, NY, USA.
56 Quaranta, G., Marano, G.C., Greco, R. and Monti, G. (2014), "Parametric identification of seismic isolators using differential evolution and particle swarm optimization", Appl. Soft Comput. J., 22, 458-464. https://doi.org/10.1016/j.asoc.2014.04.039.   DOI
57 Zordan, T., Briseghella, B. and Lan C. (2011), "Analytical formulation for limit length of integral abutment bridges", Struct. Eng. Int., 21(3), 304-310.   DOI
58 Ahmadi, M.M. and Ahmari, S. (2009), "Finite element modelling of laterally loaded piles in clay", Proceedings of the Institution of Civil Engineering - Geotechnical Engineering, 162(3), 151-163. https://doi.org/10.1680/geng.2009.162.3.151.   DOI
59 Zordan, T., Briseghella, B. and Lan, C. (2011), "Parametric and pushover analyses on integral abutment bridge", Eng. Struct., 33(2), 502-515. https://doi.org/10.1016/j.engstruct.2010.11.009.   DOI
60 Zordan, T., Briseghella, B. and Mazzarolo, E. (2010), "Bridge structural optimization through step-by-step evolutionary process", Struct. Eng. Int., 20(1), 72-78. https://doi.org/10.2749/101686610791555586.   DOI
61 Fenu, L. (2005), "On the characteristics of optimum beams with optimum length surrounded by a Winkler's medium", Struct. Mult. Opt., 30(3), 243-250. https://doi.org/10.1007/s00158-004-0387-y.   DOI
62 Winkler, E. (1867), Die Lehre von der Elastizitat und Festigkeit. Verlag Dominicus, Prague, Czech Republic.
63 Reese, L.C. and Desai, C.S. (1977) "Laterally loaded piles", Numerical Methods in Geotechnical Engineering, McGraw-Hill Book Company, New York, USA. 297-325.
64 Wakai, A., Gose, S. and Ugai, K. (1999), "3D Elasto-plastic finite element analyses of pile foundations subjected to lateral loading", Soils and Foundations, 39(1), 97-111.   DOI