• Title/Summary/Keyword: the impact on atmospheric environment

Search Result 225, Processing Time 0.03 seconds

Tropospheric Ozone Patterns in the Metropolitan Seoul Area During 1990~1997 Using Two Ozone Indices of Accumulation over the Threshold Concentrations (한계농도 누적 오존지표로 본 1990~1997년의 수도권 오존농도 변화)

  • 윤성철;박은우;장영기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.429-439
    • /
    • 1999
  • In order to assess the chronic impact of tropospheric ozone on vegetation in the Seoul metropolitan area, it is necessary to quantify ozone exposure. Two ozone indices commonly used to relate ozone exposure to injury of vegetation were calculated. SUM06(SUM of hourly concentrations at or above 0.06 ppm) and AOT40(Accumulated exposure Over a Threshold of 40 ppb) which are widely used as ozone indices in the US and Europe were calculated based on hourly ozone concentrations in 5 areas of Seoul and 5 cities of Kyunggido during 1990~1997. Most SUM06 levels were 1~5ppm.hr, however several areas in Northern and Eastern Seoul reached about 5~7 ppm.hr in 1996~1997. AOT40 values were as high as 17~24 ppm.hr. Although measured SUM06 levels would not be expected to significantly impact vegetation, the overall ozone index, as well as annual average, 95th, and 99th percentile have increased continuously over the last 8 years. Often, ozone concentrations are lower in cities where there is a significant NOx concentration, than in outlying rural agricultural areas where NOx scrubbing is not as important. Concentrations greater than 40 ppb, which can cause chronic ozone toxicity to vegetation, were found mostly in the summer and constitutued about 5~15% of total hourly ozone cocentrations.

  • PDF

The New Classification of Mountains in the Korean Peninsula and the Mountain Associated Influence on Atmospheric Environment (한반도 산맥의 재조사와 분류 및 대기환경에 미치는 영향)

  • Chung, Yong-Seung;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Mountains have significant influences on the atmospheric environment. The Korean Peninsula consists of approximately 70% mountainous area with numerous mountain ranges and peaks. The initial classification of mountains in Korea was made by a Japanese scientist from 1900 to 1902. In fact, the Japanese study created too many names of mountains to maintain, which led to confusions. The purpose of this study aims to simplify the previous names and classification of mountains in the Korean Peninsula so that they can be utilized for educational and general purpose of the society and educational institutions. Through this study, we name various mountains as one name "Korea Mountains" which is classified as the secondary world-mountain class stretching from the Korean Peninsula to northeast China (southern Manchuria). The Korea Mountains connect the third class regional medium-scale mountains of Jirin, Hamkyoung, Taebaek, and the fourth mountain class, 8 small-scale ranges including the Liaoning, Yaenbaen, Hambeuk, Pyoungbeuk, Whanghae, Charyoung, Kyoungsang and Namhae Mountains. The major mountains in the Korean Peninsula are normally influenced by the general circulation of the atmosphere of the world. The atmospheric conditions are modified on the up-stream and down-stream sides; there is a need for continuous monitoring of the atmospheric environment which impacts the ecosystem and human society.

PM2.5 Simulations for the Seoul Metropolitan Area: (V) Estimation of North Korean Emission Contribution (수도권 초미세먼지 농도모사: (V) 북한 배출량 영향 추정)

  • Bae, Minah;Kim, Hyun Cheol;Kim, Byeong-Uk;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.294-305
    • /
    • 2018
  • Quantitative assessment on the impact from North Korean emissions to surface particulate matter(PM) concentration in the Seoul Metropolitan Area (SMA), South Korea is conducted using a 3-dimensional chemistry transport model. Transboundary transport of air pollutants and their precursors are important to understand regional air quality in East Asian countries. As North Korea locates in the middle of main transport pathways of Chinese pollutants, quantifiable estimation of its impact is essential for policy making in South Korean air quality management. In this study, the Community Multiscale Air Quality Modeling System is utilized to simulate regional air quality and its sensitivity, using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment 2015 and the Clean Air Policy Support System 2013 emissions inventories for North and South Korea, respectively. Contributions were estimated by a brute force method, perturbing 50% of North and South Korean emissions. Simulations demonstrate that North Korean emissions contribute $3.89{\mu}g/m^3$ of annual surface PM concentrations in the SMA, which accounts 14.7% of the region's average. Impacts are dominant in nitrate and organic carbon (OC) concentrations, attributing almost 40% of SMA OC concentration during January and February. Clear seasonal variations are also found in North Korean emissions contribution to South Korea (and vice versa) due to seasonal characteristics of synoptic weather, especially by the change of seasonal flow patterns.

Selection of Calibration Approaches and Their Impact on the Quantification of Unknown Samples: Case Study on Reduced Sulfur Gases (환원황화합물의 분석과 검량기준의 선택에 따른 오차발생의 특성)

  • Jo, Hyo-Jae;Hong, One-Feel;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • In this study, different calibration approaches for reduced sulfur compounds (RSCs) were investigated by using thermal desorption coupled with gas chromatography (GC) and pulsed flame photometric detection (PFPD). To evaluate the effects of calibration procedures, gaseous standards of 4 RSCs ($H_2S$, $CH_3SH$, DMS, and DMDS) prepared at 10 ppm level were analyzed at 7 loading injection volumes (40, 60, 80, 100, 160, 240, and 320 ${\mu}L$). The results were then compared with calibration curves made with the Z (zero offset) and N (non-zero offset) method. The concentrations of unknown samples were then quantified by using R (ratio) method in which the slope values are compared between standards and samples. Secondly, in A (average) method, results obtained from a multi-point analysis of unknown samples were also averaged to extract representative values for each sample. Results of both experiments showed that analytical error of low molecular weight components (such as $H_2S$ and $CH_3SH$) was greatly expanded with the Z method. In conclusion, the combined application of N-A method was the more realistic approach to reduce biases in the quantification of RSCs.

A Study on Effect of Improvement Plan for Wind Energy Forecasting (풍력 발전 예보 정확도 향상을 위한 국지 기상장 수치모의 개선 방안 연구)

  • Jung, Ji-A;Lee, Hwa-Woon;Jeon, Won-Bae;Kim, Dong-Hyeok;Kim, Hyun-Goo;Kang, Young-Heack
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • This study investigates the impact of enhanced regional meteorological fields on improvement of wind energy forecasting accuracy in the southwestern coast of the Korean Peninsula. To clarify the effect of detailed surface boundary data and application of analysis nudging technique on simulated meteorological fields, several WRF simulations were carried out. Case_LT, which is a simulation with high resolution terrain height and land use data, shows the most remarkable accuracy improvement along the shoreline mainly due to modified surface characteristics such as albedo, roughness length and thermal inertia. Case_RS with high resolution SST data shows accurate SST distributions compared to observation data, and they led to change in land and sea breeze circulation. Case_GN, grid nudging applied simulation, also shows changed temperature and wind fields. Especially, the application of grid nudging dominantly influences on the change of horizontal wind components in comparison with vertical wind component.

The Impact of Interaction between Cloud and Longwave Radiation on the Asian Monsoon Circulation (구름-장파복사 상호작용이 아시아 몬순에 미치는 영향)

  • Ryu, Geun-Hyeok;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.