• Title/Summary/Keyword: the ground vibrations

Search Result 162, Processing Time 0.022 seconds

Rapid Quenching Dynamics of F Center Excitation by $OH^-$ Defects in KCI

  • 장두전;김필석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1184-1189
    • /
    • 1995
  • The rapid quenching dynamics of F center excitation by OH- defects in KCl crystals are investigated by monitoring ground state absorption bleach recovery, using a picosecond streak camera absorption spectrometer. F center absorption bleach in OH--doped crystals shows three distinguishable recovery components with the current temporal resolution, designated as slow, medium and fast components. The slow one is due to the normal relaxation process of F* centers as found in OH--free crystals. The others are consequent on energy transfer from electronically excited F centers to OH--vibrational levels. The fast component is a minor energy transfer process and resulting from the relaxation of somewhat distant, not the closest, associated pairs of F* and OH- defects. The energy transfer between widely separated F* and OH- defects opens up a recovery process via the medium component which is assisted by OH- librations, lattice vibrations and OH- dipole reorientations. The quenching behaviors of F* luminescence and photoionization by OH- are explained well by the relaxation process of the medium component.

Dynamics of Slender Rigid Blocks Mounted on the Seismic Isolation System (격리받침 위에 놓인 Slender 강체 블록의 동적거동)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.448-454
    • /
    • 2000
  • Piled multi-block system has been frequently adopted in the historic structures or monuments of cultural heritage. It is well known that such a structural system is very vulnerable to the earthquake shaking. If the structure is of slender type, then it may experience overturning at very low level intensity of ground shaking. One of the methods used to protect such structures from earthquake is seismic isolation system. But the behavior of multi-block systems mounted on the isolated basis is not well understood yet. In this paper we investigate the dynamic behavior of single slender rigid block mounted on the three different isolation systems, i.e., P-F system, FPS and LRB system. Sliding at the isolation interface of P-F system and FPS is formulated based on Coulomb friction. The mounted single block is assumed undergoing rocking or sticking only. Impacting of a single block is described using distinct element method (DEM). Free vibrations due to a prescribed initial conditions are studied. Responses to the harmonic excitation and earthquake motions are calculated

  • PDF

Estizmation of Structure Stability on the Ground to Vibration from Dual Composite Tunnels (이중 복합터널 상부구조물의 진동에 대한 안정성 평가)

  • Shin, S.M.;Jang, Y.S.;Lee, W.J.;Kwon, S.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1244-1250
    • /
    • 2008
  • The site of interest is a residence redevelopment area which has excavation construction with cut-off walls. The site is located over Dong-Mang-Bong tunnel and Seoul No. 6 subway tunnel. This study analyzed numerically the influence of vibrations from No. 6 subway tunnel to the basement of the redeveloped apartment away from the distance about 11m. Kyoung-bu highspeed railway's time history model with linearly reduced maximum acceleration is applied to take into the subway maximum speed of 75km/h. The maximum velocity of vibration for the cross section of the interest was estimated as 0.28cm/sec which satisfied the allowable standard of 0.5cm/sec for apartment and residence of Seoul.

  • PDF

A Study on the Related Equation of the Blast Vibration Velocity and the Vibration Level (발파진동속도와 진동레벨과의 관계식 연구)

  • Kim, Il-Jung;Ki, Kyoung-Chul;Cho, Young-Dong
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2009
  • The regression analysis of the ground vibration data (particle velocity and vibration level) was carried out to find an empirical relation between the vibration velocity (PVS, PPV, $V_V$) and the vibration level. The regression results revealed that the correlation of the blast vibration velocity and vibration level was quite good. It seems that the empirical relation obtained in this research will be applied to evaluating and managing the various environmental vibrations.

Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper

  • Abbas Bigdeli;Md. Motiur Rahman;Dookie Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • This study investigates the effectiveness of tuned mass dampers (TMDs) in controlling vibrations in low-rise reinforced concrete buildings. It examines both linear and nonlinear behaviors of concrete structures subjected to strong ground motions from the PEER database. The research follows the ASCE 7-16 provisions to model structural nonlinearity. Additionally, the study explores the effect of varying TMD mass ratios on the performance of these systems in real-world conditions. The findings emphasize the importance of accounting for structural nonlinearity in low-rise buildings, highlighting its significant influence on the controlled response under severe seismic excitations. The study suggests including nonlinear analysis in seismic design practices and recommends customizing TMD designs to optimize vibration control. These recommendations have practical implications for enhancing the safety and effectiveness of seismic design practices for low-rise buildings.

A Comparison of Blasting Vibration Level due to the Kind of Explosives Produced in Korea (국산(國産) 화약류(火藥類)의 종류(種類)에 따른 발파(發破) 진동치(振動値)의 비교(比較))

  • Lim, Han-Uk;Kim, Woong-Soo;Lee, Kyoung-Woon
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.9-14
    • /
    • 1985
  • The blast-induced ground vibrations is one of the most important factors which is considered to design blasting patterns in urban excavation. To compare with vibration level of different explosives, peak particle velocity of each explosive was measured. The results are summerized as follows. 1. Among the three kinds of explosives, the largest vibration was obtained from the gelatine dynamite, while the smallest was blasting of ammonium nitrate. 2. The vibration levels of ammonium nitrate and slurry explosive were smaller about 35%, 20% respectively than that of gelatine dynamite.

  • PDF

A Study on the Vibration Effect by Dynamic Compaction Method at Waste Landfill (폐기물 매립지반에서 동다짐공법에 의한 진도영향에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.141-148
    • /
    • 2001
  • Dynamic compaction is the ground improvement method by applying the impact energy. This impact energy can damage to adjacent structure in urban area. Therefore, if dynamic compaction method is applied, careful attention should be payed to surrounded structures. In this study, the method was performed in waste landfill and the frequency of vibrations were measured according to each distances, drop-heights, and vibrating directions. The measured data show that particle velocity bas low frequency and it is greatest in longitudinal direction. There was little differences between Maynes suggestion and measured data. Therefore, Maynes suggestion can be adopted if the range of vibration can be predicted. Also, It was found that minimum 45m distance is needed in order to satisfy the administrative code if dynamic compaction method is applied.

  • PDF

A Study on the Construction Vibrations Prediction of Bridge Structures using the Reliability Index (신뢰성 지수를 이용한 교량 구조물의 건설진동 예측에 관한 연구)

  • 박연수;우정하;전양배;김응록;김동현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.442-449
    • /
    • 2003
  • This study presents a new analysis of blast vibration equations of a bridge structures using a reliability index. Changing the reliability makes each blast vibration equation. The blast equations are divided into three classes, having 50%, 90% and 99.9% at ${\beta}$=0, 1.28 and 3 respectively. In the result of this research, the assumption equations which used ${\beta}$=1.28 is suitable. By using these blast equations, it is possible for users to predict reliable ground vibration values upon demand.

  • PDF

Effects of multiple MR dampers controlled by fuzzy-based strategies on structural vibration reduction

  • Wilson, Claudia Mara Dias
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.349-363
    • /
    • 2012
  • Fuzzy logic based control has recently been proposed for regulating the properties of magnetorheological (MR) dampers in an effort to reduce vibrations of structures subjected to seismic excitations. So far, most studies showing the effectiveness of these algorithms have focused on the use of a single MR damper. Because multiple dampers would be needed in practical applications, this study aims to evaluate the effects of multiple individually tuned fuzzy-controlled MR dampers in reducing responses of a multi-degree-of-freedom structure subjected to seismic motions. Two different fuzzy-control algorithms are considered, a traditional controller where all parameters are kept constant, and a gain-scheduling control strategy. Different damper placement configurations are also considered, as are different numbers of MR dampers. To determine the robustness of the fuzzy controllers developed to changes in ground excitation, the structure selected is subjected to different earthquake records. Responses analyzed include peak and root mean square displacements, accelerations, and interstory drifts. Results obtained with the fuzzy-based control schemes are compared to passive control strategies.

Non-Stationary Response of a Vehicle Obtained From a Series of Stationary Responses

  • Karacay, Tuncay;Akturk, Nizami;Eroglu, Mehmet;Ba
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1565-1571
    • /
    • 2004
  • Ride characteristics of a vehicle moving on a rough ground with changing travel velocity are analyzed in this paper. The solution is difficult due to the non-stationary characteristics of the problem. Hence a new technique has been proposed to overcome this difficulty. This new technique is employed in the analysis of ride characteristics of a vehicle with changing velocity in the time/frequency domain. It is found that the proposed technique gives successful results in modelling non-stationary responses in terms of a series of stationary responses.