• 제목/요약/키워드: the column-part

검색결과 530건 처리시간 0.026초

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

Beam-Column 연결부(連結部)의 해석(解析) (Analysis of Beam-Column Connection)

  • 임상전;양홍종
    • 대한조선학회지
    • /
    • 제14권4호
    • /
    • pp.3-14
    • /
    • 1977
  • There are many Beam-Column connections in general structures and ship structures. For simplicity and convenience of analysis, the connections are mostly considered hinged when not reinforced or rigidly fixed when reinforced. This paper has intended to analyze the Beam-Column connection which is assumed two dimensional flat plate. The analysis has been preformed by Finite Element Method following the change of moment of inertia at connection. The conclusion of this investigation is as follows: By reinforcing or increasing the moment of inertia at connection part, the stress distribution of whole structure and the stress concentration at that part are relieved. Displacements of beam(when column is fixed) are almost linearly decreasing by the change of moment of inertia at connection.

  • PDF

내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구 (Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column)

  • 염응준;김현종;한택희;강영종
    • 한국방재학회 논문집
    • /
    • 제8권1호
    • /
    • pp.15-21
    • /
    • 2008
  • 내부 구속 중공 CFT(ICH-CFT) 기둥은 콘크리트의 양쪽(중공부와 외부)에 두 개의 강관이 삽입된 형태이다. 외부 강관과 내부 장관은 강관과 중공 부분으로 인하여 좋은 내진 성능과 연성을 발휘하며, 또한 에너지 흡수도 하는 기능을 가지고 있다. 그러므로 본 교각 형태의 실용성을 위한 연구가 필요하다고 할 수 있다. 본 논문에서는 ICH-CFT 기둥의 실용적인 설계를 목적으로, 내진성능에 대한 매개변수 연구를 실시하였다. 매개변수는 교각의 지름과 중공비 그리고 같은 모멘트 성능을 발휘하는 장관의 두께이다. 또한 경제성에 따른 연성도 평가와 CFT기둥과의 비교를 통하여 좀 더 실용적인 평가를 하고자 하였다. 특히, 중공비와 외부강관 두께에 따라 내진성능이 차이를 보였으며, ICH-CFT 교각의 외부강관의 두께에 따른 경제적인 중공비를 제시하였다.

강재기둥과 PHC 파일을 연결하는 반구형 접합부(HAT Joint)의 유한요소 해석 PART II : 각형강관기둥 (Analytical Study of HAT Joint between PHC Pile and Steel Tube Column)

  • 오진탁;이연승;김상봉;주영규
    • 한국공간구조학회논문집
    • /
    • 제15권1호
    • /
    • pp.111-118
    • /
    • 2015
  • In Part I, we disccussed of joint between PHC pile and steel column in foundation of large space structures, one prototype of a joint of PHC pile to steel pipe column was suggested on the basis of analytical studies. In this paper, I explain the Joint of PHC pile to steel tube column and more detail of analysis.

내부 보-기둥 접합부의 전단파괴 (Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint)

  • 이민섭;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

표고버섯으로부터 분리한 렉틴의 생화학적 특성 (Biochemical Characteristics of Lectins Isolated from Lentinula edodes)

  • 김영신;조남석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.79-88
    • /
    • 2001
  • 표고버섯(Lentinula edodes) 으로부터 0.15 M NaCl 용액에 의하여 crude lectin을 추출하였으며, 황산암모늄에 의한 침전 음이온교환수지 및 hydroxyapatite 컬럼을 이용한 크로마토그래피에 의하여 정제하였다. 버섯균산과 균병으로 나누어 추출된 crude lectin의 양에 있어서는 균산부분이 균병부분에 비하여 2배 이상 높은 lectin을 함유하였으며, 가열한 버섯에서는 lectin의 함량 및 활성은 미처리보다 감소되었다. 건조된 균산 50 g으로부터 얻은 crude lectin은 720 mg으로서 46.03%의 수율로 얻었으며, DEAE Sephadex A-50 column에 의한 분리, 정제 후 정제된 lectin 201 mg을 crude lectin의 28% 수율로 얻을 수 있었다. Crude lectin을 정제함으로서 aspartic acid, serine, alanine 및 histidine등의 아미노산이 증가되었고, glutamic acid, glycine, leucine, tyrosine 및 methionine 등이 lectin에는 검색되지 않았다. DEAE Sephadex A-50 column의 chromatograpy를 통해 분리 정제한 활성을 지니는 lectin의 주된 부분은 Agglutinating test 결과, fraction A 및 B는 적혈구응집활성을 나타냈으며, 약 23 kDa의 분자량을 가지고 있었다. 활성을 지니는 부분을 다시 hydroxyapatite column에 의해 정제하여 얻은 LA-a와 LB-b는 각각 24 kDa과 23 kDa의 분자량을 나타냈다.

  • PDF

역타기둥 이음부의 공기포 배출을 위한 실험적 연구 (The Experimental Study on Deflation of Air for Top-Down Joint area)

  • 임형일;이동하;백민수;박병근;이영도;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.763-768
    • /
    • 2001
  • The purpose of this study is to research a specific material characteristics of top down concrete at column joint and to reduce column joint opening. Based on the established top down study, the experiment to apply an real construction case is performed. When the concrete placed into joint of top down column, raised air bubble is left as opening. This study is examined the incomplete packing reason in the top down column and found to air deflation method. The result of study is below (1) As the method to minimize column opening caused from confined air, it is required that an air exhaust port installation in joint column. (2) From air exhaust port installation, most of air bubble in column part is exhausted. As the concrete placing height is going up, air bubble size is going smaller.

  • PDF

Modeling for the strap combined footings Part II: Mathematical model for design

  • Yanez-Palafox, Juan Antonio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.109-121
    • /
    • 2019
  • This paper presents the second part of the modeling for the strap combined footings, this part shows a mathematical model for design of strap combined footings subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing for one and/or two property lines of sides opposite restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The first part shows the optimal contact surface for the strap combined footings to obtain the most economical dimensioning on the soil (optimal area). The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. A numerical example is presented to obtain the design of strap combined footings subject to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems and it can also be used for rectangular and T-shaped combined footings.

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.

Numerical study of progressive collapse in reinforced concrete frames with FRP under column removal

  • Esfandiari, J.;Latifi, M.K.
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.165-172
    • /
    • 2019
  • Progressive collapse is one of the factors which if not predicted at the time of structure plan; its occurrence will lead to catastrophic damages. Through having a glance over important structures chronicles in the world, we will notice that the reason of their collapse is a minor damage in structure caused by an accident like a terrorist attack, smashing a vehicle, fire, gas explosion, construction flaws and its expanding. Progressive collapse includes expanding rudimentary rupture from one part to another which leads to total collapse of a structure or a major part it. This study examines the progressive collapse of a 5-story concrete building with three column eliminating scenarios, including the removal of the corner, side and middle columns with the ABAQUS software. Then the beams and the bottom of the concrete slab were reinforced by (reinforcement of carbon fiber reinforced polymer) FRP and then the structure was re-analyzed. The results of the analysis show that the reinforcement of carbon fiber reinforced polymer sheets is one of the effective ways to rehabilitate and reduce the progressive collapse in concrete structures.