• Title/Summary/Keyword: the Galerkin method

Search Result 817, Processing Time 0.021 seconds

HIGHER ORDER DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.337-350
    • /
    • 2014
  • In this paper, we consider discontinuous Galerkin finite element methods with interior penalty term to approximate the solution of nonlinear parabolic problems with mixed boundary conditions. We construct the finite element spaces of the piecewise polynomials on which we define fully discrete discontinuous Galerkin approximations using the Crank-Nicolson method. To analyze the error estimates, we construct an appropriate projection which allows us to obtain the optimal order of a priori ${\ell}^{\infty}(L^2)$ error estimates of discontinuous Galerkin approximations in both spatial and temporal directions.

Block and Extraction of Wave Energy Using a Rolling Porous Pendulum Plate (횡 방향으로 운동하는 투과성 진자판을 이용한 파랑에너지 차단과 추출)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.180-190
    • /
    • 2018
  • The preliminary study was carried out to utilize the rolling porous pendulum plate as a hybrid system combining blocking and extracting of wave energy. The Galerkin method suggested by Porter and Evans (1995) was used to solve the diffraction and radiation problems to obtain reflection and transmission coefficient, roll displacement, extracted power. The Galerkin method provides better convergence than the matched eigenfunction expansion method (MEEM), which improves the accuracy of the analytical solution even if the CPU time is shorter. The porous plate can not be said to be more effective than the impermeable plate in terms of wave energy extraction and wave blocking, but it has the advantage of reducing the wave load and exchanging seawater.

PRECONDITIONED ITERATIVE METHOD FOR PETROV-GALERKIN PROCEDURE

  • Chung, Seiyoung;Oh, Seyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.57-70
    • /
    • 1997
  • In this paper two preconditioned GMRES and QMR methods are applied to the non-Hermitian system from the Petrov-Galerkin procedure for the Poisson equation and compared to each other. To our purpose the ILUT and the SSOR preconditioners are used.

  • PDF

ERROR ESTIMATES OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR LINEAR SOBOLEV EQUATIONS

  • Ohm, M.R.;Shin, J.Y.;Lee, H.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1221-1234
    • /
    • 2009
  • In this paper, we construct fully discrete discontinuous Galerkin approximations to the solution of linear Sobolev equations. We apply a symmetric interior penalty method which has an interior penalty term to compensate the continuity on the edges of interelements. The optimal convergence of the fully discrete discontinuous Galerkin approximations in ${\ell}^{\infty}(L^2)$ norm is proved.

  • PDF

ERROR ESTIMATES FOR A GALERKIN METHOD FOR A COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

  • Omrani, Khaled;Rahmeni, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.219-244
    • /
    • 2020
  • In this paper, we approximate the solution of the coupled nonlinear Schrödinger equations by using a fully discrete finite element scheme based on the standard Galerkin method in space and implicit midpoint discretization in time. The proposed scheme guarantees the conservation of the total mass and the energy. First, a priori error estimates for the fully discrete Galerkin method is derived. Second, the existence of the approximated solution is proved by virtue of the Brouwer fixed point theorem. Moreover, the uniqueness of the solution is shown. Finally, convergence orders of the fully discrete Crank-Nicolson scheme are discussed. The end of the paper is devoted to some numerical experiments.

L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.897-915
    • /
    • 2011
  • In this paper, we develop a symmetric Galerkin method with interior penalty terms to construct fully discrete approximations of the solution for nonlinear Sobolev equations. To analyze the convergence of discontinuous Galerkin approximations, we introduce an appropriate projection and derive the optimal $L^2$ error estimates.

A Study on an Effective Higher-Order Taylor-Galerkin Method for the Analysis of Structural Dynamics (동적 해석을 위한 효과적 고차 Taylor Galerkin법에 관한 연구)

  • 윤성기;박상훈
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.353-359
    • /
    • 1993
  • In this study, the Taylor-Galerkin method is modified to take into consideration the third order term in the Taylor series of the fundamental variable. In the Taylor-Galerkin method, after expressing the governing equation of motion in conservation form, the temporal discretization is done first and then spatial discretization follows in contrast to the conventional approaches. A predictor-corrector type algorithm has been developed previously by the same author. A new computationally efficient direct algorithm is proposed in this study. A study on convergency and accuracy of the solution is carried out. Numerical examples show that this new algorithm exhibits the same order of accuracy with less computational effort.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

Longitudinal Vibration Analysis of Deploying Rods (전개하는 막대의 종진동 해석)

  • Cho, Eun-Hyoung;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.625-630
    • /
    • 2000
  • In this paper, the governing equation and the boundary conditions of deploying rods are derived by using Hamilton's principle. The Galerkin method using the comparison function of the instantaneous natural modes is adopted by which the governing equation is discretized. Based on the discretized equations, the time integration analysis is performed and the longitudinal vibrations for the deploying and the retrieving velocity are analyzed.

  • PDF