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ERROR ESTIMATES OF FULLY DISCRETE
DISCONTINUOUS GALERKIN APPROXIMATIONS
FOR LINEAR SOBOLEV EQUATIONST

M. R. Onm, J. Y. SHIN* AND H. Y. LEE

ABSTRACT. In this paper, we construct fully discrete discontinuous Galerkin ap-
proximations to the solution of linear Sobolev equations. We apply a symmestric
interior penalty method which has an interior penalty term to compensate the
continuity on the edges of interelements. The optimal convergence of the fully
discrete discontinuous Galerkin approximations in £° (Lz) norm is proved.
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1. Introduction

Discontinuous Galerkin methods using interior penalties for elliptic and par-
abolic equations were first introduced by Douglas, Dupont and Wheeler [4, 15]
and Arnold [1] in 1970s. Compared over the conventional Galerkin method,
discontinuous Galerkin methods allow meshes which are more flexible in their
decompositions and degree of nonuniformity both in time and space.

A new type of discontinuous Galerkin method for diffusion problems which is
elementwise conservative was introduced and analyzed by Oden, Babuska and
Baumann [7]. In general, the interior penalty terms which are composed of the
weighted L? inner product of the jumps of the function values across element
edges are added to impose the continuity to the approximate solution, indirectly.

New applications of discontinuous Galerkin method with interior penalties
to elliptic and nonlinear parabolic equations were introduced and analyzed by
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Riviere, Wheeler, Girault and Banas. It was shown that the methods in [9, 10,
11, 12] were elementwise conservative and a priori and a posteriori estimates
in higher dimensions were derived. In [8], the authors developed a symmetric
interior penalty method for nonlinear parabolic equations and prove the optimal
convergence of the approximate solution in L>°(L?) norm.

The type of Scbolev equations is one of important partial differential equa-
tions. It is known that the equations of this type arise in many areas of mathe-
matical physics and fluid mechanics. In [5, 6], the authors constructed Galerkin
approximations for Sobolev equations and analyzed theier error estimate. Re-
cently, in [13, 14] Sun and Yang formulated the discontinuous Galerkin approx-
imate schemes and obtained error estimates in L°°(H') and ¢?(H!) norms. In
this paper, we apply a discontinuous symmetric interior penalty Galerkin method
to construct the fully discrete approximations and analyze the error estimate in
£°(L?) norm.

In section 2, we describe the model problem and state some assumptions for
later use. In section 3, we introduce some notations, fully discrete discontinuous
Galerkin approximations to the model problem using a SIPG method and state
some preliminary lemmas. In section 4, we analyze the optimal convergence of
the approximate solution.

2. Model problem and assumptions
In this paper we consider the following linear Sobolev equation:
u — V- (Vu+ Vuy) = f(z,u) inQx(0,T], (2.1)
with the boundary condition
(Vu+ Vuy) -n=0 on d0 x (0,7] (2.2)

and the initial condition
u(z,0) = uo(z) in Q, (2.3)

where © is a convex polygonal domain in R%, d = 2, 3, and n is the unit outward
normal vector to 9.
Assume that the following conditions are satisfied.
1. f is uniformly Lipschitz continuous with respect to its second variable.
2. The model problem has a unique solution satisfying the following regularity
condition:
Ue € LOO([O, T], HQ)

3. Notations and the formulation of fully discrete schemes
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Let &, = {El, Ey, -« E Nh} be a regular quasi-uniform subdivision of €,
where Ej is a triangle or a quadrilateral if d = 2 and E; is a 3-simplex or 3-
rectangle if d = 3. Let h; = diam(E;) be the diameter of E; and h = max {hj :

ji=12,--- ,Nh}. We assume that &), satisfies the non-degeneracy requirement,

ie., there exists a constant ~ such that each E; contains a ball of radius of vh;
and assume that there exists a constant p > 0 such that

h
— < p forall j=1,2,--- Nj.
h,j

This quasi-uniformity assumption is used for driving error estimates in terms
of the degree of polynomials. We denote the set of all edges of the elements by
{61,62,~'- €Dy s EPy 41, ,th}7 where e, C Q for 1 < k < Pp, and e, C 02
for P, +1 <k < M,

The L? inner product in L?*(E) is denoted by (-,-)g. For an s > 0 and a
domain E ¢ R%, the usual norm of the Sobolev space H* (E) is denoted by
| - lls.z and the usual seminorm is denoted by | - |s g. When these notations are
applied, we write simply || - ||s and | - |5 instead of || - ||s.0 and | - |50 if E = Q.

For an s > 0 and a subdivision &, of 2, we define the following space

HY(&,) = {v € I2(Q) v, € HY(E;),j = 1,2, ,Nh}.

1 .
And for ¢ € H*(&), s > 5 we define the average function {¢} and the jump
function [¢] on ey = E; N Ej, i < j as follows;

(0} = 5@lp ko + 36l Vo €en, 1K<
[¢] = (¢ Ei)‘ek - (¢|Ej)!ek7 Ve €ep, 1<k< P

Now, we define the following broken norms for ¢ € H*(&), s > 2

Np,

loliz =" ligll3 5,
=1

Ny,

ot =3 (161 5, + K218 5, ) + 7 (6,6).
j=1
Ny

oIz = > 19135,
j=1
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where
Ph

() = "’“I / olllds

is an interior penalty term and o is a positive function which takes the constant
value o on the edge e; and is bounded below by oy > 0 and above by o*.
Let r be a positive integer. The finite element space is taken to be

Dy(En) = {v € LX(Q) :v|p, € PAE;), j=1,2,- ,Nh}

where P.(E;) is the set of polynomials of degree less than or equal to r on Ej.

From now on, the symbol C indicates a generic positive constant indepen-
dent of h and is not necessarily the same in any two places. The following hp
approximation properties are proved in [2, 3].

Lemma 3.1. Let E; € &, and ¢ € H*(E;). Then there exist a positive constant
C depending on s, 7, p, but independent of ¢, r, and h and a sequence zf €

P.(Ej), r=1,2, -+, such that for any 0 < q < s,
u—q
6= 22 llg.m, < CF nqsnsbj s> 0,
; 1
6 — 210, < C—2— ||¢>||5E. s>,
r 2
3
Rtz 3
I6 = 2 e, < O~ lidlla, s> 3,
r 2

where p1 = min(r + 1, s) and e; is an edge or a face of Ej;.

Lemma 3.2. For each I}; € &, there exists a positive constant C depending
only on v and p such that the following two trace inequalities hold:

1
nasnae,. <c (—_|¢|3,E,, 4 hj|¢|%,Ej) | V6 e HY(E)),
J

1
[22° <o (ot +miohs, ), e mm),
7

where e; is an edge or a face of E; and n; is the unit outward normal vector to
€.

Now, we define a bilinear functional A on H?(£,) x H%(&) by

Oe]

Ny Py, Py,

A9 9) =D (Vo Ve, =Y | (Vo] = [ {Ve-ni}gl+T7(¢,4).

k=1 k=1Y¢k k=1"¢k
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Then from (2.1), u satisfies the following weak formulation
(ug, v) + A(u, v) + Alug, v) = (f(u),v). (3.1)

T
For a positive integer N, let At = N and t; = jAt, 0 < j7 < N. And for a

function g(x,t), we use the following notations:

9; = g(x,t;), for 0<j <N,

146 0 .

gj0 = _2—gj+1+ng7 0<j<N -1,
Ji+1 — 95 .

Atgj:]Tt]’ 0<j<N-1,

b3)
gt,m:(—g) L 0<j<N-1
0t/ o

where 6 € [0,1]. Now we define a norm as follows

1/2
N-1 /

Wolle= ) = Z ||ng|§
Jj=0

The fully-discrete DG scheme to the problem (2.1) is formulated in the fol-
lowing way: Find {U;}Y., € D, () satisfying

{ (AUj,v) + A(Uj0,v) + A(AU;,v) = (f(Uj0),v), Vv € Dy(E), (3.2)
U(-,0) = Up, '

where Uy € D,(&}) is an appropriate initial approximation to ug(z), for example
Uo(z) = u(z) to be defined later. For 6§ = 0, (3.2) yields the Crank-Nicolson
discontinuous Galerkin approximations and for § = 1, (3.2) yields a backward
Euler discontinuous Galerkin approximations.

For A > 0, we let

Ax(9,9) = A($,9) + N, ), Yo,9 € H*(E).

Then the following lemmas can be proved by simple calculations, together with
Lemma 3.2 and the definition of || - ||1.

Lemma 3.3. For X > 0, there exists a constant C independent of h satisfying

[ A&, )] < Clllullll, Vo, v € H?(En).
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Lemma 3.4. For a sufficiently large o > 0 and A > 0, there exists a positive
constant (3 such that

Ax(v,v) > Blloll¥, Vv € Dr(En).
By Lemma 3.3 and Lemma 3.4, if A > 0 there exists u € D,.(€p,) satisfying
Ax{u—u,v) =0, YveD.(&,).

Theorem 3.1. For r, s > 2, there exists a constant C' independent of h satis-
fying the following stastements:

. ~ h#=t
®  Mu-alh < C= [[ulls,
.. - h#
(i)  flu-al < Crs—_ZHUHs’
_ h#=1
(i)  flue—wfl < C = luells,
. - ht
(iv)  Jue —u < ¢ [[uells-

Now we state the following lemma which is essential in the proof of the optimal
convergence of the fully discrete approximations in £°(L?) norm. The proof can
be found in [8].

Lemma 3.5. If p; ¢ satisfies
Aguy — lty0) = (At)pje,

then there exists a constant C' independent of h such that
(1) if0 <6 <1, losolls < Cllusel| zoo (2
(ir) if 6 =0, llosolly < CAt|uesell oo (r2)-

Proof. 1If 6 € (0,1], then there exist ¢ and ¢;* such that

+6._ * 1. *k
Pj.0 = "‘Q—Utt(tj) + §Utt(t]— )

Therefore, by Theorem 3.1, we get
Nosolls < Clitweell Lo -y,

< o(naﬁ = Ugt|| Loy + ||“tt||L°°(|||~|||1))
< Clluel Lo r-p2)-
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If 6 = 0, then there exist ¢} and #}% such that

1 * 1 ~ Kok
Pio = Af{ ~ug(t5) — guut(tj,z)} :
By the similar argument as above, we get

llpjelli < CAtuesell oo ()p-p)-

4. Optimal ¢>~(L?) error estimates

Now in order to prove the optimal convergence of u — U in £*°(L?) norm, we
denote 0™ = u(-,t") — u(-,t") and (" = u(-,t") — U™

Theorem 4.1. If At is sufficiently small, then there exist C* and C independent
of h, At, and r such that for y = min(r +1,s), r > 1
(i) if 0 <6 <1, then

h
v s (Wl + Tellesnsy ) + Gt (el i)

(1) if @ = 0, then

B ht
o (Il + sl eagrrsy ) + O A2 (el oe ).

Proof. By subtracting (3.2) from (3.1), we get for j =0,1,2,---, N —1

<Cy+1At G ,'U) + (u(t5,0), ) — (%{’Q + A(ujg,v) — A(U; 9,v)
+ A(wiltio),v) = A(AT;,v) = (Flws0) = FWU30),0), Vo € Do(En).

From (3.3) and the definitions of 5 and ¢, we obtain

(429 0) + 4G + 4G, v)

=l + (P 0) A - Al G0

+ A(Agig, v) + (f(uj,o) — f(Uj), U)'
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We put v = (50 + Al in (3.4) to get

(%, G+ At(j) + A(C0, Gs0) + A(Gh0, DeGy) + A(D4GG5CGo)
+ A(AG, Adgy)
= — (ue(ts0), Go + DiGy) + ujHAt_ Y, Cio+ Ath)

— A(uj0 — Uj g, o+ AsC5) — Alug(tyg), Go + Dey)
+ A(Avj, o + AiGy) + (f(uj,G) — f(Uj0), G0+ Ath)o

(3.5)
By the definition of A, we get
Ny
(DG Go) + IAG ™ + AGas o) + A(A, DiGy) + > (Y0, VAL B
k=1
Py Py,
=3 [ 1960 mHag) = Y [ (TAG ol + 7 (G0 A)
k=1" %k k=1 ¢k
Ny, Py
+3 (VA Voa)e -~ Y [ (VAL mHGa
k=1 k=1" ¢k

P,
3 [ (VG0 mAG] (86, Go)
k=1"¢k

= — (ueltj0), Go + Delj) + (FJHA—t% Gio+ At(j)
— A(ujo — Uj0, G0+ AeGs) — Alue(tse), Go + Dels) + A(Aty, (o + Aely)
+ (f(uj,o) — f(Uj0), o + Ath)-

From the equation above, we obtain

(A, Go) + 186G 1% + Ax(Glo, Cip) + AN(DeGs, Arly)

Ny, Py
+2) (VG0 VA By — 2 Z/ {VGio - i} Auly)
k=1 k=1"€k

Py,
-2 Z/ {VAW - nit[Go) +27°(G0, AuGy)
k=1"Y ¢k
= = (walts0), o+ DaGy) + (Adtiy, Gio + Aely) — Aluzo — U0, G0 + Bily)

— A(ue(tse), G0 + AelG) + A(Ddty, G + Aiy)

3.6
+ (f(uz0) — f(Us0), o + Aes) + MGG, Go) + MDA, Agl). (3.6)
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By simple calculations, we get

; 6 1-6
(A, o) = (Cj%—lA*th’ Lt Git1+ TC;‘)

= 5 G, (14 0G0 + (G, (- 00G) — (G (1 4+ 8)G1)
(G- 0]

= s [ OGP 200G, i) — (L )]

> S [0 DGl — 61 — 012 ~ (1 = O]

= o (Gl — 1.

(3.7
The coercivity of Ay in Lemma 3.4 implies that

AN(Gi05 Ci.0) + AN(ALG, AiG) = CIG ol + 1A I1T). (3.8)

By simple calculations, we get the following two inequalities

Nn

o .y
Z(VCJO’VAtCJ Z <VCJ+1 VCJ, 1;0VCJ'+1 n ITVCJ')
Ex (3.9)

k=1

%(mvcwﬂlo IVeHe)

and

Py,
760, 806) = 328 [ Gaiaglas

P,
- (0% 1+6 1—-6 ‘ C‘+1*C' (3.10)
*;m ek[ Gt —5 C]:|I:] A7 J}ds

1

> TN[‘]U(Cj+17Cj+1) = J7(5, )l

Substituting the inequalites (3.7)-(3.10) into (3.6), we get

1
aag G l” = 1617 + CUEzollT + 1A I + A1

1 2
+toA; V¢ alls = Iveg] + 2AL [T (Gigr, Giar) — T7(G5 G)]
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< = (iltg0), Gio + Aly) + (el G+ DiG) — A0 — Ty, Gro + Ay )
- A(ut(tj,9)7 Gio+ Ath) + A(Adig, G0 + DeGj)

+ (f(uj,e) —f(Uj), G0 + Ath) + XG0, Cia) + AAGG, AGy)

Z/

k=1 ¢k

Py,
(VG0 mlAG]+2Y / (VAL 1} Gl
k

=17¢k

(3.11)
Notice that

—ui(tj0) + Agy = —ne(ty0) — Us(tse) + Avuy

3.12
= —m(tje) + Atpjo. (312)

From (3.11), (3.12), and the definition of 7, we obtain

1
Q—N[”CJ'H“Q — 1G]+ CU G0l + NAGID + 1A
1 2
+ Z—At“"VCj-Hmz —IV¢GI?] + AL (7 (Ca1, Gan) — T7(G€G5)]
- <77t(tj,9)a Cio+ Ath) + (Atpjo,Cio + As) — Alnge, G0 + DeGy)
- A(ﬂt(tj,e), G0+ Ath) + A(Atpjo, (o + As(j)

+ (F(u30) = FW50), Go + DG ) + MG o) + MAG, Aiy)

IN

(3.13)

Ph Ph
23 [ (Voo mHaG] 123 [ {VAG e}l
k=17¢k

k=1"¢k

= - (m(tj,o), Go+ At(j) + (Atpj0, o+ Als) + M50, G + Aey)
+ A(Ut(tj,9)7 G0+ Ath) + A(Atpjg, o + Aily)

+ (f(uj,a) — f(Uj60), G0 + At(j) + A0, Gio) + MACG, D)
(3.14)

P, P,
123 / (Vo mtAg] +23 / (VA - me Gl
k=1"¢€k

k=1"¢k
10
=> I
i=1
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Now for sufficiently small € > 0, we obtain the following estimates of I;:

1121 < lmets.0) 1 (IG5l + 18:6511),

< Clintts )l + = (160l + 18:1),
1121 < Natosolll (Il + 144G

< CA0 psal + e (G0l + 1AG17),
[15] < Cllms.l® + £ (IGsall? + 18:6512),
(14l < Cllmltz o)l + 2 (102 + 18:17),
1I5] < CA0 50l + < (U0l + DAGI),
1Is] < K(Imsoll + 1G5l (icsoll + 1A ).

< C(lmsll + 1)) + el A1,
| < Aol
|5l < AJAG 2,
[Io] < CUVC0lly + 2l A 2,
ol < CT7(¢1.0,¢10) + <l AG I,

for each 1 <4 < 10. Substituting the estimation of I; 1 <4 < 10 into (3.13), we
get

s (Gl = 16171 + OOl + HAGHD) + [AG I
b VGl ~ UVGIE] + 5 [, Gr) = 7(556)

< C[lmt50P + (A0 os0llt + Izl + 1600 + 1Vl + I7 (Gios G10)]
< CllImsol + Imelts )12 + (A6 ozoll® + G112 + G112 + VG

FAVGAlE + (G0, o)

for sufficiently small A > 0. From (3.14), we have

G40l 1617 + Cat) (Us0ll? + BAG 1) + 2BDIAG
+ (IVGAlE = I9GIR) + (@ + 5) (17 (G Gr) = T7(65,69))
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< C(At) [Ilm,ell2 + (00117 + (A8 lpsoll + I I + 1517 + NVGIS

IVl + T7 G, G0) + (65, )

; (3.16)
Summing (3.15) from j =0 to j = N — 1, we obtain
N-1
ISl + 20V NI + 277 (v, v) + C(AL) Y {IGollT + 1A I}
j=0

N
< 1oll® + 20V Eoll + 277 (Cor Go) + (AR Y [IIG I+ WVEGIE + T (¢ 6))]
j=1

N
+C(A) Y lInsl? + lIme(ts. 00117 + (A1) lj6l13] -
j=0
If At is sufficiently small, then by the discrete version of Gronwall’s lemma we

obtain
N-1

Ion I + IV ENIE + 7 (G, Gv) + C(AL) DTG0l + 1A I}
=0
< {lIGoll? + 209 6ol + 277 (Go, o)
N

+C(a0) Y [In? + lmlts.0) 12 + (5021 ps0llE] .
§=0
Choosing an appropriate initial approximation U%(z) and usinging Lemma 3.5,
we get the following results.
(i) If 0 < 6 < 1, then

N-1
NI + IVENIE + 77 (G, ) + CLAL) > {lGsell + 1A 1T}
§=0
W & 2 2
< CAY) oy > lwillrs + ety o)llFre + (A8 NuwsellFoe (s, o0, )] -

j=0
(ii) If # = 0, then

N-—
ISl + VNG + 77 (Cnv, Cv) + C(AL) Z {Iciollf -+ NAGITY

W
<O =5 D [wsllFes + Nty o)l ] + (A0 ueeel ooty 2100, 72)-
j=1

This implies the results of Theorem 4.1.
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