• Title/Summary/Keyword: the Body Posture Control

Search Result 160, Processing Time 0.025 seconds

Posture Stabilization Control of Biped Transformer Robot under Disturbances (이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어)

  • Geun-Tae Kim;Myung-Hun Yeo;Jung-Yup Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.

Effects of Consecutive whole Body Vibration Exercise using Heel Raise Posture on Neuromuscular Response during Single-leg Stance (뒤꿈치 들기 자세를 이용한 전신진동 운동이 외발서기 시 근신경 반응에 미치는 영향)

  • Kim, Dae Dong;Lee, Myeounggon;Youm, Changhong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2021
  • Objective: This study aimed to analyze the effects of consecutive whole body vibration through heel raise posture on the center of pressure and electromyography of anterior tibial muscle, lateral gastrocnemius and soleus muscles during single-leg stance. Method: The subjects of this study included 30 healthy males in their 20's, with the following inclusion criteria: no history of orthopaedic medical history, no participation in regular exercises, no history of whole body vibration exercise, and right leg being the dominant leg. The experimental procedure involved pretreatment measurement of eye open single-leg stance, application of whole body vibration for 30 seconds, post-treatment measurement (3 measurements in total). Static and dynamic movements have been measured over 2 separate experiments, with 72 hours gap between the experiments. Static movement involved maintaining single-leg heel raise posture for 30 seconds while applying whole body vibration, and dynamic movement involved heel raise (15 repetitions over 30 seconds) while applying whole body vibration. The strength of applied whole body vibration was 35 Hz frequency and 2~4 mm amplitude. Results: As the single-leg posture after static heel raise posture, mediolateral velocity of the center of pressure at post 2 and post 3 were significantly reduced compared to the pre-treatment measurement. In addition, the percentage for reference voluntary contraction in anterior tibial muscle and soleus and median frequency at anterior tibial muscle and lateral gastrocnemius muscle at post 3 were significantly decreased compared to the pre-treatment value. As the single-leg posture after dynamic heel raise posture, the mediolateral 95% edge frequency of the center of pressure and median frequency at anterior tibial muscle, lateral gastrocnemius muscle, and soleus muscle at post 3 were significantly reduced compared to the pre-treatment value. Conclusion: Acute whole body vibration via static and dynamic heel raise posture have positive effect on mediolateral posture control during single-leg stance.

Control System Design of Electric Operated Adjustable Bed for Body Posture Stability (체간 안정성을 위한 전동침대의 제어시스템 설계)

  • Bae, J.H.;Moon, I.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.55-62
    • /
    • 2012
  • In this paper we propose a control system to preserve the interior angle between back section and upper leg section to be larger than 90 degrees using a single limit switch. To design the control system we analyze the kinematics of actuation mechanisms for the back section and the upper leg section, and find out an optimal solution for the controller design. Using a prototype control system we perform experiments to test the controller performance, and show that the interior angle between the back section and the upper leg section is always preserved larger than 90 degree. From the experimental results, we show the proposed control system is feasible to keep the body posture stability.

  • PDF

A study on the control factors of posture and balance (자세조절과 균형에 관한 고찰)

  • Chae, Jung-Byung;Kim, Byung-Jo;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.421-431
    • /
    • 2001
  • It is important to maintain good habitual posture in daily life. Abnormal body aligament is provoked by excessive tension of bad posture. And these symptom is connected with other disorder of the body like back pain, cervical pain and shoulder pain through inaccurate body mechanism in daily life. This study was searched to figure out effects of factor that how to balance good posture and normal posture. And the other purpose of this study was to make new calculate device for analysis of effective posture in clinic.

  • PDF

Effects of the Upright Body Type Exercise Program on Postures and Foot Balance in Female High School Students (바른체형 운동프로그램이 여자고등학생의 자세 및 발의 균형감에 미치는 영향)

  • Son, Nam-Young;Lee, Joong-Sook;Kim, Joo-Hyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • The purpose of this study was to investigate the degree of improvement of posture and foot balance between the exercise group and the control group after upright body type exercise program of 12 weeks with 14 female students in B female high school. According to the procedure of this study, following conclusion came out. First, The change of head's posture became near a centerline and a significant decrease from $7.57{\pm}13.95mm$ to $2.71{\pm}5.23mm$ in experimental group and there was a statistically significant difference (p<.002). The change of left foot balance was near the perfect balance (50%) from $48.93{\pm}3.87%$ to $49.74{\pm}2.95%$ and right foot balance was from $51.07{\pm}3.87%$ to $50.26{\pm}2.95%$ in experimental group and there were near the perfect balance (50%). The change of left foot balance of control group fall away the perfect balance (50%) from $49.97{\pm}2.67%$ to $49.08{\pm}1.41%$, right foot balance also fall away the perfect balance (50%) from $50.03{\pm}2.67%$ to $50.92{\pm}1.41%$. As a conclusion, upright body type exercise program considered to effect posture and foot balance in female high school girls. Consequently It was suggested that upright body type exercise program with improvement and prevention for posture's unbalance of female high school girls. This program could be utilized for improvement of youth posture and foot balance.

Effects of Abnormal Neck Posture on Postural Stability (목 자세에 따른 선 자세에서의 신체균형능력 평가)

  • Park, Sung Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.16-23
    • /
    • 2018
  • Postural instability can increase the likelihood of hazardous slip and fall accidents in workplaces. The present study intended to extend understanding of the effect of abnormal neck posture on postural control during quiet standing. The effect of body fatigue on the postural control was also of primary concern. Twelve healthy undergraduate students volunteered to participate in the experiment. Standing on a force platform with the neck neutral, flexed, extended, or rotated, subjects' center of pressures (COP) were measured under the two levels of body fatigue. For the fatigue condition, Subjects exercised in a treadmill to meet the predetermined level of body fatigue. Analyzing the position coordinates of COPs, the length of postural sway path was assessed in both medio-lateral (ML) axis and anterior-posterior (AP) axis. Results showed that, in AP direction, neck extension or rotation significantly increased the sway length as compared with neck neutral. Neck extension led to greater sway length compared to neck rotation. Neck flexion did not differ from neck neutral. The sway length in the AP direction also became significantly larger as the body fatigue accumulated after treadmill exercise. In ML direction, as compared to neutral posture, the neck extension, flexion, or rotation did not significantly affect the length of postural sway path. However, the sway length seemed to increase marginally with the neck extended during the fatigued condition. This study demonstrates that abnormal neck posture may interfere with postural control during standing. The ability to maintain postural stability decreases significantly with the neck extended or rotated. Body fatigue leads to postural instability further.

Trajectory Tracking Control of the Wheeled Inverse Pendulum Type Self - Contained Mobile Robot in Two Dimensional Plane (역진자형 자주로보트의 2차원 평면에서 궤도주행제어에 관한 연구)

  • 하윤수;유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.44-53
    • /
    • 1993
  • In this paper, we discuss on the control algorithm to make the wheeled inverse pendulum type mobile robot move in two dimensional plane. The robot considered in this paper has two independently driven wheels in same axel which suport and move it-self, and is assumed to have the fyro type sensor to know the inclination algle of the body and rotary encoders to know wheel's rotation angular velocity. The control algorithm is divided into three parts. The first part is for the posture and velocity control for forward-backward direction, the second is the steering control, and the last part is for the control of total system to track the given trajectory. We handle the running velocity control of the robot as part of the posture control to keep the balance because the posture relates deeply with the velocity and can be controlled by the velocities of the wheels. The control problem is analyzed as the tracking control, and the controller is realized with the state feedback and feed-forward of the reference velocity. Constructing the control system which contained one intergrator in forward path, we also realized the control system without observer for the estimation of the accumulated errors in the inclination angle of the body. To prevent the robot from being unstable state by sudden variation of the reference velocity when it starts and stops, or changes velocity, the reference velocity of which acceleration is slowly changing, is ordered to the robot. To control its steering, we give the different reference velocities for both wheels which are calculated from the desired angular velocity of the body. Finally, we presents the experimental results of the experimental robot Yamabico Kurara in which the proposed control algorithm had been implemented.

  • PDF

Inductive Inverse Kinematics Algorithm for the Natural Posture Control (자연스러운 자세 제어를 위한 귀납적 역운동학 알고리즘)

  • Lee, Bum-Ro;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.367-375
    • /
    • 2002
  • Inverse kinematics is a very useful method for control]ing the posture of an articulated body. In most inverse kinematics processes, the major matter of concern is not the posture of an articulated body itself but the position and direction of the end effector. In some applications such as 3D character animations, however, it is more important to generate an overall natural posture for the character rather than place the end effector in the exact position. Indeed, when an animator wants to modify the posture of a human-like 3D character with many physical constraints, he has to undergo considerable trial-and-error to generate a realistic posture for the character. In this paper, the Inductive Inverse Kinematics(IIK) algorithm using a Uniform Posture Map(UPM) is proposed to control the posture of a human-like 3D character. The proposed algorithm quantizes human behaviors without distortion to generate a UPM, and then generates a natural posture by searching the UPM. If necessary, the resulting posture could be compensated with a traditional Cyclic Coordinate Descent (CCD). The proposed method could be applied to produce 3D-character animations based on the key frame method, 3D games and virtual reality.

The Study of the Control Mechanism of Heel-rise Posture in Dance Major Student and Non-dance Majors (무용전공자와 일반인의 Heel-rise 자세 조절 메커니즘에 관한 연구)

  • Jung, Mi-Ra
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • This experiment studied the change in a human's control of his or her static posture by analyzing the stabilogram diffusion and, by using the said study, evaluated the control ability of different groups with different experiences. The postures had a rising requirement of heel-rise according to three conditions: heel-toe, ball, toe; the groups were divided into dance major student and non-dance majors. The results of the critical points according to posture did not show a direct relation with the change in postures that had a rising requirement of heel-rise. The diffusion coefficient(D) had greater stochastic activity for short-term regions that utilize open-loop controls without feedback than for long-term regions that used closed-loop controls with feedback to maintain balance. The directional results of the body undergoing disturbance showed that A/P direction's diffusion coefficient (D) was larger than that of M/L direction. Both feet's planar diffusion coefficients were a linear combination of the diffusion coefficients calculated for the x and y axis. In studying the different abilities to control posture between a dance major student and a non-dance majors, a comparison of open-loop control's diffusion coefficient(D) was effective, and dance major student had superior control ability to that of non-dance majors.