• Title/Summary/Keyword: text corpus

Search Result 244, Processing Time 0.03 seconds

Corpus-based Analysis on Vocabulary Found in 『Donguibogam』 (코퍼스 분석방법을 이용한 『동의보감(東醫寶鑑)』의 어휘 분석)

  • Jung, Ji-Hun;Kim, Dongryul
    • The Journal of Korean Medical History
    • /
    • v.28 no.1
    • /
    • pp.135-141
    • /
    • 2015
  • The purpose of this study is to analyze vocabulary found in "Donguibogam", one of the medical books in mid-Chosun, through Corpus-based analysis, one of the text analysis methods. According to it, Donguibogam has total 871,000 words in it, and Chinese characters used in it are total 5,130. Among them, 2,430 characters form 99% of the entire text. The most frequently appearing 20 Chinese characters are mainly function words, and with this, we can see that "Donguibogam" is a book equipped with complete forms of sentences just like other books. Examining the chapters of "Donguibogam" by comparison, Remedies and Acupuncture indicated lower frequencies of function words than Internal Medicine, External Medicine, and Miscellaneous Diseases. "Yixuerumen (Introduction to Medicine)" which influenced "Donguibogam" very much has lower frequencies of function words than "Donguibogam" in its most frequently appearing words. This may be because "Yixuerumen" maintains the form of Chileonjeolgu (a quatrain with seven Chinese characters in each line with seven-word lines) and adds footnotes below it. Corpus-based analysis helps us to see the words mainly used by measuring their frequencies in the book of medicine. Therefore, this researcher suggests that the results of this analysis can be used for education of Chinese characters at the college of Korean Medicine.

Automatic Training Corpus Generation Method of Named Entity Recognition Using Knowledge-Bases (개체명 인식 코퍼스 생성을 위한 지식베이스 활용 기법)

  • Park, Youngmin;Kim, Yejin;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.27-41
    • /
    • 2016
  • Named entity recognition is to classify elements in text into predefined categories and used for various departments which receives natural language inputs. In this paper, we propose a method which can generate named entity training corpus automatically using knowledge bases. We apply two different methods to generate corpus depending on the knowledge bases. One of the methods attaches named entity labels to text data using Wikipedia. The other method crawls data from web and labels named entities to web text data using Freebase. We conduct two experiments to evaluate corpus quality and our proposed method for generating Named entity recognition corpus automatically. We extract sentences randomly from two corpus which called Wikipedia corpus and Web corpus then label them to validate both automatic labeled corpus. We also show the performance of named entity recognizer trained by corpus generated in our proposed method. The result shows that our proposed method adapts well with new corpus which reflects diverse sentence structures and the newest entities.

  • PDF

Building an Exceptional Pronunciation Dictionary For Korean Automatic Pronunciation Generator (한국어 자동 발음열 생성을 위한 예외발음사전 구축)

  • Kim, Sun-Hee
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.167-177
    • /
    • 2003
  • This paper presents a method of building an exceptional pronunciation dictionary for Korean automatic pronunciation generator. An automatic pronunciation generator is an essential element of speech recognition system and a TTS (Text-To-Speech) system. It is composed of a part of regular rules and an exceptional pronunciation dictionary. The exceptional pronunciation dictionary is created by extracting the words which have exceptional pronunciations from text corpus based on the characteristics of the words of exceptional pronunciation through phonological research and text analysis. Thus, the method contributes to improve performance of Korean automatic pronunciation generator as well as the performance of speech recognition system and TTS system.

  • PDF

AP, IP Prediction For Corpus-based Korean Text-To-Speech (코퍼스 방식 음성합성에서의 개선된 운율구 경계 예측)

  • Kwon, O-Hil;Hong, Mun-Ki;Kang, Sun-Mee;Shin, Ji-Young
    • Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • One of the most important factor in the performance of Korean text-to-speech system is the prediction of accentual and intonational phrase boundary. The previous method of prediction shows only the 75-85% which is not proper in the practical and commercial system. Therefore, more accurate prediction must be needed in the practical system. In this study, we propose the simple and more accurate method of the prediction of AP, IP.

  • PDF

Prosodic Contour Generation for Korean Text-To-Speech System Using Artificial Neural Networks

  • Lim, Un-Cheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2E
    • /
    • pp.43-50
    • /
    • 2009
  • To get more natural synthetic speech generated by a Korean TTS (Text-To-Speech) system, we have to know all the possible prosodic rules in Korean spoken language. We should find out these rules from linguistic, phonetic information or from real speech. In general, all of these rules should be integrated into a prosody-generation algorithm in a TTS system. But this algorithm cannot cover up all the possible prosodic rules in a language and it is not perfect, so the naturalness of synthesized speech cannot be as good as we expect. ANNs (Artificial Neural Networks) can be trained to learn the prosodic rules in Korean spoken language. To train and test ANNs, we need to prepare the prosodic patterns of all the phonemic segments in a prosodic corpus. A prosodic corpus will include meaningful sentences to represent all the possible prosodic rules. Sentences in the corpus were made by picking up a series of words from the list of PB (phonetically Balanced) isolated words. These sentences in the corpus were read by speakers, recorded, and collected as a speech database. By analyzing recorded real speech, we can extract prosodic pattern about each phoneme, and assign them as target and test patterns for ANNs. ANNs can learn the prosody from natural speech and generate prosodic patterns of the central phonemic segment in phoneme strings as output response of ANNs when phoneme strings of a sentence are given to ANNs as input stimuli.

Study on Extraction of Headwords for Compilation of 「Donguibogam Dictionary」 - Based on Corpus-based Analysis - (『동의보감사전』 편찬을 위한 표제어 추출에 관한 연구 - 코퍼스 분석방법을 바탕으로 -)

  • Jung, Ji-Hun;Kim, Do-Hoon;Kim, Dong-Ryul
    • The Journal of Korean Medical History
    • /
    • v.29 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • This article attempts to extract headwords for complication of "Donguibogam Dictionary" with Corpus-based Analysis. The computerized original text of Donguibogam is changed into a text file by a program 'EM Editor'. Chinese characters of high frequency of exposure among Chinese characters of Donguibogam are extracted by a Corpus-based analytical program 'AntConc'. Two-syllable, three-syllable, four-syllable, and five-syllable words including each Chinese characters of high frequency are extracted through n-cluster, one of functions of AntConc. Lastly, The output that is meaningful as a word is sorted. As a result, words that often appear in Donguibogam can be sorted in this article, and the names of books, medical herbs, disease symptoms, and prescriptions often appear especially. This way to extract headwords by this Corpus-based Analysis can suggest better headwords list for "Donguibogam Dictionary" in the future.

English-Korean speech translation corpus (EnKoST-C): Construction procedure and evaluation results

  • Jeong-Uk Bang;Joon-Gyu Maeng;Jun Park;Seung Yun;Sang-Hun Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.18-27
    • /
    • 2023
  • We present an English-Korean speech translation corpus, named EnKoST-C. End-to-end model training for speech translation tasks often suffers from a lack of parallel data, such as speech data in the source language and equivalent text data in the target language. Most available public speech translation corpora were developed for European languages, and there is currently no public corpus for English-Korean end-to-end speech translation. Thus, we created an EnKoST-C centered on TED Talks. In this process, we enhance the sentence alignment approach using the subtitle time information and bilingual sentence embedding information. As a result, we built a 559-h English-Korean speech translation corpus. The proposed sentence alignment approach showed excellent performance of 0.96 f-measure score. We also show the baseline performance of an English-Korean speech translation model trained with EnKoST-C. The EnKoST-C is freely available on a Korean government open data hub site.

The Sequence Labeling Approach for Text Alignment of Plagiarism Detection

  • Kong, Leilei;Han, Zhongyuan;Qi, Haoliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4814-4832
    • /
    • 2019
  • Plagiarism detection is increasingly exploiting text alignment. Text alignment involves extracting the plagiarism passages in a pair of the suspicious document and its source document. The heuristics have achieved excellent performance in text alignment. However, the further improvements of the heuristic methods mainly depends more on the experiences of experts, which makes the heuristics lack of the abilities for continuous improvements. To address this problem, machine learning maybe a proper way. Considering the position relations and the context of text segments pairs, we formalize the text alignment task as a problem of sequence labeling, improving the current methods at the model level. Especially, this paper proposes to use the probabilistic graphical model to tag the observed sequence of pairs of text segments. Hence we present the sequence labeling approach for text alignment in plagiarism detection based on Conditional Random Fields. The proposed approach is evaluated on the PAN@CLEF 2012 artificial high obfuscation plagiarism corpus and the simulated paraphrase plagiarism corpus, and compared with the methods achieved the best performance in PAN@CLEF 2012, 2013 and 2014. Experimental results demonstrate that the proposed approach significantly outperforms the state of the art methods.

N- gram Adaptation Using Information Retrieval and Dynamic Interpolation Coefficient (정보검색 기법과 동적 보간 계수를 이용한 N-gram 언어모델의 적응)

  • Choi Joon Ki;Oh Yung-Hwan
    • MALSORI
    • /
    • no.56
    • /
    • pp.207-223
    • /
    • 2005
  • The goal of language model adaptation is to improve the background language model with a relatively small adaptation corpus. This study presents a language model adaptation technique where additional text data for the adaptation do not exist. We propose the information retrieval (IR) technique with N-gram language modeling to collect the adaptation corpus from baseline text data. We also propose to use a dynamic language model interpolation coefficient to combine the background language model and the adapted language model. The interpolation coefficient is estimated from the word hypotheses obtained by segmenting the input speech data reserved for held-out validation data. This allows the final adapted model to improve the performance of the background model consistently The proposed approach reduces the word error rate by $13.6\%$ relative to baseline 4-gram for two-hour broadcast news speech recognition.

  • PDF

A Corpus Selection Based Approach to Language Modeling for Large Vocabulary Continuous Speech Recognition (대용량 연속 음성 인식 시스템에서의 코퍼스 선별 방법에 의한 언어모델 설계)

  • Oh, Yoo-Rhee;Yoon, Jae-Sam;kim, Hong-Kook
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • In this paper, we propose a language modeling approach to improve the performance of a large vocabulary continuous speech recognition system. The proposed approach is based on the active learning framework that helps to select a text corpus from a plenty amount of text data required for language modeling. The perplexity is used as a measure for the corpus selection in the active learning. From the recognition experiments on the task of continuous Korean speech, the speech recognition system employing the language model by the proposed language modeling approach reduces the word error rate by about 6.6 % with less computational complexity than that using a language model constructed with randomly selected texts.

  • PDF