• Title/Summary/Keyword: tetragonal phase

Search Result 447, Processing Time 0.027 seconds

Effect of Transition Metal Oxides Addition on Yttria - stabilized Zirconia for improving Physical and Mechanical Properties

  • Park, Jaesung;Lee, Yeongshin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Mechanical properties of Y2O3-containing tetragonal ZrO2 polycrystals(Y-TZP) were investigated. Several additives were used to modify the hardness and fracture toughness of Y-TZP. The effects of these individual additives were discussed and their interactions were also analysed. Each additive, such as CoO, Fe2O3, MnO2 was found to deteriorate the mechanical properties of Y-TZP when it was used singly. But the fracture toughness of Y-TZP was significantly improved when these additives and Al2O3 were added in combination at a certain ratio. The addition of CoO, Fe2O3 and MnO2 into Y-TZP resulted in the more complex behavior of fracture toughness and hardness. The specimen with 1.5 wt%-Fe2O3, 3.0 wt% -Al2O3 and 1.5 wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of $10.8MPa{\cdot}m1/2$ with Vickers hardness of 1201 kgf/mm2. However, the toughness decreased as the ratio increased and macrocracks developed beyond the ratio of 25%. Sample No. 16 is improved high Physical and Mechanical Properties.

Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP (세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성)

  • Jung, Seung-Hwa;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.379-384
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

A simplified phase diagram in the ternary system $Y_2O_3-Ta(Nb)_2O_5-ZrO_2$ ($Y_2O_3-Ta(Nb)_2O_5-ZrO_2$ 삼성분계 상태도)

  • 이득용;김대준;장주웅;이명현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.377-383
    • /
    • 1997
  • Yttria-stabilized TZP alloyed with pentavalent oxides $(Ta_2O_5,\;Nb_2O_5)$ were fabricated by the conventional sintering method at $1500^{\circ}C$ in air to construct the simplified ternary phase diagram. The phase stability of tetragonal -$ZrO_2$ from the quasi-binary system $ZrO_2-YTa(Nb)O_4$, which do not transform to monoclinic-$ZrO_2$ even for a wide range of grain size and annealing temperature, was investigated to determine composition region of the non-transformable $t-ZrO_2$ solid solution$(NT_{ss})$. Phase stability of $NT_{ss}$ was probably due to the enhanced stability of $_YTa(Nb)O4$ having the tetragonal fergusonite structure. It was experimentally found that mixtures having $NT_{ss}$ alloyed with $T_{ss}$ by weight%% showed both excellent phase stability of $t-ZrO_2$ and fracture toughness even though the calculated composition of the mixture /was located outside $NT_{ss}$ composition region.

  • PDF

Phase Evolution and Electrical Properties of PZT Films by Aerosol-Deposition Method (에어로졸 증착법에 의해 제조된 PZT 막의 상변화와 전기적 특성)

  • Park, Chun-Kil;Kang, Dong-Kyun;Lee, Seung-Hee;Kong, Young-Min;Jeong, Dae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.541-545
    • /
    • 2017
  • $Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT) films with a thickness of $5{\sim}10{\mu}m$ at the morphotropic phase boundary were fabricated by aerosol-deposition (AD), and their phase evolution and electrical properties were investigated. The microstructure of the AD PZT films revealed nanosized grains with a low crystallinity and a dense structure at room temperature. The AD PZT films showed a mixture of tetragonal and rhombohedral phases. The post-annealing temperature was varied to study the phase transition behavior. The crystallinity of the AD PZT films was enhanced by annealing at 450, 550, and $650^{\circ}C$ for 2 h. At $650^{\circ}C$, the tetragonal and rhombohedral phases reacted to form a bridge phase between the two phases. The polarization-electric field hysteresis loops of the AD PZT film annealed at $650^{\circ}C$ exhibited a smaller cohesive field and a lower slim hysteresis than the films annealed at 450 and $550^{\circ}C$.

Thermal Annealing Effect on the Machining Damage for the Single Crystalline Silicon (단결정 실리콘의 기계적 손상에 대한 열처리 효과)

  • 정상훈;정성민;오한석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.770-776
    • /
    • 2003
  • #140 mesh and #600 mesh wheels were adopted to grind (111) and (100) oriented single crystalline silicon wafer and the grinding induced change of the surface integrity was investigated. For this purpose, microroughness, residual stress and phase transformation were analyzed for the ground surface. Microroughness was analyzed using AFM (Atomic Force Microscope) and crystal structure was analyzed using micro-Raman spectroscopy. The residual stress and phase transformation were also analyzed after thermal annealing in the air. As a result, microroughness of (111) wafer was larger than that of (100) wafer after grinding. It was observed using Raman spectrum that the silicon was transformed from diamond cubic Si-I to Si-III(body centered tetragonal) or Si-XII(rhombohedral). Residual stress relaxation was also shown in cavities which were produced after grinding. The thermal annealing was effective for the recovery of the silicon phase to the original phase and the residual stress relaxation.

Effect of Milling Medium Materials on Mechanical Alloying of Mo-65.8at%Si Powder Mixture (Mo-65.8at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향)

  • 박상보
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.179-187
    • /
    • 1997
  • Milling media of steel and zirconia were used to produce $MoSi_2$ by mechanical alloying (MA) of Mo and Si powders. The effect of milling media on MA of Mo-65.8at%Si powder mixture has been investigated by SEM, XRD, DTh and in-situ thermal analysis. The powders mechanically alloyed by milling medium of steel for 8 hours showed the structure of fine mixture of Mo and Si, and those mechanically alloyed by milling medium of zirconia for longer milling time showed the structure of fine mixture of Mo and Si. The tetragonal $\alpha$-$MoSi_2$ Phase and the tetragonal $Mo_5Si_3$ phase appeared with small Mo peaks in the powders milled by milling medium of steel for 4 and 8 hours. The $\alpha$-$MoSi_2$ phase and the hexagonal $\beta$-$MoSi_2$ phase were formed after longer milling time. The $\alpha$-$MoSi_2$ phase appeared with large Mo peaks in the powders milled by milling medium of zirconia for 4 hours. The phases, $\alpha$-$MoSi_2$ and $\beta$-$MoSi_2$. were formed in the powders milled for longer milling time. DTA and annealing results showed that Mo and Si were transformed into $\alpha$-$MoSi_2$ and $Mo_5Si_3$, while $\beta$-$MoSi_2$ into $\alpha$-$MoSi_2$. In-situ thermal analysis results demonstrated that there were a sudden temperature rise at 212 min and a gradual increase in temperature in case of milling media of steel and zirconia, respectively. The results indicate that MA can be influenced by materials of milling medium which can give either impact energy on powders or thermal energy accumulated in vial.

  • PDF

Fabrication of Y2O3 doped ZrO2 Nanopowder by Reverse Micelle and Sol-Gel Processing

  • Kim, Hyun-Ju;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.568-572
    • /
    • 2011
  • The preparation of $Y_2O_3$-doped $ZrO_2$ nanoparticles in Igepal CO-520/cyclohexane reverse micelle solutions is studied here. In this work, we synthesized nanosized $Y_2O_3$-doped $ZrO_2$ powders in a reverse micelle process using aqueous ammonia as the precipitant. In this way, a hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a microemulsion consisting of cyclohexane as the oil phase, with poly (oxyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by thermogravimetrydifferential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The crystallite size was found to nearly identical with an increase in the water-to-surfactant (R) molar ratio. A FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and the calcined powder. The average particle size and distribution of the synthesized $Y_2O_3$-doped $ZrO_2$ were below 5 nm and narrow, respectively. The TG-DTA analysis showed that the phase of the $Y_2O_3$-doped $ZrO_2$ nanoparticles changes from the monoclinic phase to the tetragonal phase at temperatures close to $530^{\circ}C$. The phase of the synthesized $Y_2O_3$-doped $ZrO_2$ when heated to $600^{\circ}C$ was tetragonal $ZrO_2$.

Nd1+XBa2-XCu3O7-δ Bulk Superconductor by Zone-melt Process

  • Soh, Dea-Wha;Guo, Fan-Zhan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.21-24
    • /
    • 2002
  • Two kinds of $Nd_{1+X}Ba_{2-X}Cu_3O_{7-{\delta}}$, the sintering samples and zone melting samples, were heat-treated under pure Ar at 950$^{circ}C$. The substitution of Nd ion for Ba ion in the $Nd_{1+X}Ba_{2-X}Cu_3O_{7-{\delta}}$ before and after the heat treatment was investigated by XRD. In order to confirm the effects of the heat treatment, the Tc and Jc of samples with/without the heat treatment under Ar were comparatively studied. $Nd_{1+X}Ba_{2-X}Cu_3O_{7-{\delta}}$ samples were oxygenated under pure oxygen at $300^{circ}C$. From the XRD pattern it was found that the sample with x<0.4 was transferred from tetragonal phase to orthorhombic phase after the oxygenation, while the sample with x>0.4 did not show the phase transition even after a long time oxygenation. Therefore, the low oxygen partial pressure (Ar+1 % O$_2$) was used for the ambient atmosphere of the zone-melting samples, which could reduce the melting temperature and depress the substitution of Nd for Ba. After the improvement in the zone-melting process, the Jc value was increased to 2 x $10^4$A/$cm^2$ (0 T, 78 K). The particle orientation and the structure of zone-melted NdBaCuO were studied by the XRD and SEM analysis.

BCTZ Addition on the Microstructure, Piezoelectric/Dielectric Properties and Phase Transition of NKLN-AS Piezoelectric Ceramics (BCTZ첨가가 NKLN-AS계 압전세라믹스의 미세구조와 압전/유전특성 및 상전이현상에 미치는 효과)

  • Lee, Woong-Jae;Ur, Soon-Chul;Lee, Young-Geun;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • Presently, the most promising family of lead-free piezoelectric ceramics is based on $K_{0.5}Na_{0.5}NbO_3$(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the $(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$ component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3-x(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3$ in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: $d_{33}$ = 185 pC/N, $k_P$ = 41%, $T_C=325^{\circ}C$, $T_{O-T}=-4^{\circ}C$.

The Jahn-Teller Effect in the Iron Copper Spinel $CuFe_{2}O_{4}$ (철, 구리 스피넬 $CuFe_{2}O_{4}$의 Jahn-Teller 효과에 관한 연구)

  • 서정철;이민용
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.123-127
    • /
    • 1995
  • $CuFe_{2}O_{4}$ was accomplished by chemical rrethod and the crystallographic and magnetic properties have been studied by $M\"{o}ssbauer$ spectroscopy and X-ray diffraction. The slowly cooled sample is found to have a tetragonal spinel structure with the lattice constant $a=8.26{\pm}0.05{\AA},\;c=8.75{{\pm}}0.05{\AA}$. The $M\"{o}ssbauer$ spectra between the room temperature to the Curie temperature show that the $Cu_{2+}$ ions at octahedral site have the Jahn-Teller effect and the sample exhibits a structural phase transition near 630K due to the Jahn-Teller effect. The Curie temperature is found to be 690K and it is lower than that of ceramic method.

  • PDF