• Title/Summary/Keyword: test scenarios

Search Result 523, Processing Time 0.028 seconds

Safety Performance Evaluation Scenarios of Autonomous Emergency Braking System for Cyclist Collision (자전거 탑승자 대상 자동비상제동장치의 성능평가 시나리오)

  • Kim, Taewoo;Yi, Kyongsu;Min, Kyongchan;Lee, EunDok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • This paper present a performance evaluation scenarios to assess the safety performance of autonomous emergency braking (AEB) system for cyclist collision. To guarantee the safety performance of AEB for cyclist, AEB system should be tested in various scenarios which can be occurred in real driving condition. For this, real-traffic car-to-cyclist collision data are analyzed to classify the real traffic collision scenarios. Using this information, typical car-to-cyclist collision scenarios are selected. Also, in order to develop the detail features of these collision scenarios, several accident cases related with these scenarios are explained. Based on these information, test scenarios which can describe the car-to-cyclist collisions occurred in Korea are proposed. For practicality and feasibility of the test scenarios, proposed scenarios should be designed to assess the safety performance of AEB system effectively. For this, some test scenarios are combined or removed based on the consideration about the effectiveness of each scenario to the assessment of the performance of AEB system. To confirm that the proposed test scenarios are realistic and physically meaningful, simulation is conducted using simple AEB system in proposed test scenarios.

Safety Assessment Scenarios for Cyclist AEB (자전거 대상 자동비상제동장치의 성능평가 시나리오 개발)

  • Kim, Taewoo;Yi, Kyongsu;Lee, EunDok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.13-19
    • /
    • 2017
  • This paper presents safety assessment scenarios for cyclist autonomous emergency braking(AEB) system. To assess the safety performance of AEB in real traffic situation with limited number of scenarios, scenario should reflect the characteristics of real traffic collision cases. For this, statistic data of real traffic car-to-cyclist collision in Korea are analyzed. Many types of accidents are listed and categorized based on the movement of vehicle and cycle just before the collision. Then, the characteristics, main issues and limitations of each scenarios are discussed. Not only the test scenario itself but also the cost and time for the test are very important issues for the test scenarios to actually repeat the test for various systems. Also, the performance of AEB can be effected by the algorithm of AEB and the technical limitation of the sensors and hardwares. Therefore, required number of tests, possibility of dummy destruction and other technical issues are discussed for each scenarios. Based on these information, typical scenarios are selected. Also, using this information, vehicle speed range, cyclist speed and collision point are established. Proposed scenarios are verified and modified based on the vehicle test results. vehicle test was evaluated 5 times for each scenarios. Based on this results, final test scenarios are modified and proposed.

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle (자율주행 안전성 평가 시나리오 개발 및 검증)

  • Chae, Heungseok;Jeong, Yonghwan;Lee, Myungsu;Shin, Jaekon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • Regulation for the testing and operation of automated vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for automated vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for automated vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of automated vehicles on highways. A total of seven scenarios are selected in consideration of safety priority and real traffic situation. Six scenarios are relevant with lane keeping and one scenario is relevant with lane change. All scenarios are developed based on existing ADAS evaluation scenarios and repeated simulation of automated vehicle algorithm. Safety evaluation factors as well as scenarios are developed. The safety factors are based on existing ADAS ISO requirements, ADAS safety factors and current traffic regulations. For the scenarios, a hunter vehicle is needed in addition to automated vehicle evaluated. The hunter vehicle performs multiple roles like preceding vehicle, cut-in vehicle and so on. The hunter vehicle is also automated vehicle equipped with high performance GPS, radar and Lidar. All the scenarios can be implemented by driving a lap on a KATRI ITS test track. These scenarios and safety evaluation factors are investigated via both a computer simulation and an experimental vehicle test on the test track. The experimental vehicle test was conducted with two automated vehicles, which are the evaluated vehicle and the hunter vehicle.

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

  • Ng, Pin;Fung, Richard Y.K.;Kong, Ray W.M.
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • Test scenarios can be derived based on some system models for requirements validation purposes. Model-based test suite reduction aims to provide a smaller set of test scenarios which can preserve the original test coverage with respect to some testing criteria. We are proposing to apply Formal Concept Analysis (FCA) in analyzing the association between a set of test scenarios and a set of transitions specified in a state machine model. By utilizing the properties of concept lattice, we are able to determine incrementally a minimal set of test scenarios with adequate test coverage.

Study on the Operational Test Scenarios for Assessment of Unmanned Ground Vehicle's Operation Suitability (UGV의 운용적합성 평가를 위한 운용 시험 시나리오 연구)

  • Gyumin Kang;Kyungsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.6-15
    • /
    • 2023
  • This paper develops scenarios to evaluate the safety performance of Unmanned Ground Vehicle on military circumstances. The scenarios were created using Pegasus Project 6-layer format. These scenarios consist of straight road, curved road, merging road and crossroad. We adapt these scenarios to unpaved road. The characteristics of unpaved roads were divided into roughness, friction coefficient and road frequency. This adaption is validated via computer simulation. We observe the scan lines of vehicle become tangled of the straight road that make the cognitive abilities of the vehicle low and the lane-keeping is unable when vehicles entering curved off-roads over 40 km/h. The developed scenarios will contribute to enhancing stability from the perspective of introducing autonomous driving technology to Korean military.

Vehicle Recognition of ADAS Vehicle in Collision Situation with Multiple Vehicles in Single Lane (한 차선 내 복수 차량이 존재하는 추돌 상황에서의 ADAS 차량의 차량 인식에 관한 연구)

  • Lee, Seohang;Park, Sanghyeop;Choi, Inseong;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.44-52
    • /
    • 2019
  • In this study a safety evaluation method is presented for a ADAS vehicle to be tested in collision situation when multiple vehicles are present on a single lane. Test scenarios are developed based on Euro-NCAP assessment scenarios, accident database and related simulation results in previous works. An automated evaluation system that is called as the K-target mover is used for active safety evaluation experiments. The experiments are conducted with two types of tests. First, the rear-end collision tests with 25% and 50% overlap for the test vehicle and target vehicle are conducted with the two kinds of test vehicles. On the other hand, the rear-end collision tests which include multiple vehicles in a single lane with 25% and 50% overlaps, are also conducted. Experimental results show that the test vehicles with ADAS cannot recognize the collision situation sometimes in the developed test scenarios, even in the case that the test vehicle showed stable performance in the simple overlap scenarios.

A Study on the Testing Method of Signalling Link Function of the No.7 Common Channel Signalling System (No.7 공통선 신호방식의 신호 링크기능 테스트에 관한 연구)

  • Kim, Duck-Jin;Park, Seok-Cheon;Cho, Hyson-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.943-946
    • /
    • 1987
  • This paper describes the test techniques that are used for the implementation test of signalling link function in the signalling system No.7 recommended by 0703 in CCITT red book. The test scenarios are produced by means of the state transition diagrams which are based on the specification of CCITT recommendation 0703. This test scenarios consist of five independent tasks written in MC68000 assembly language and are scheduled to be executed in multitasking kernel. This test scenarios can also be used to test signalling link function implemented in the different environment.

  • PDF

Conformance Test Scenario Extraction Techniques for Embedded Software using Test Execution Time (테스트 수행시간을 고려한 임베디드 소프트웨어의 적합성 테스트 시나리오 추출 기법)

  • Park, In-Su;Shin, Young-Sul;Ahn, Sung-Ho;Kim, Jin-Sam;Kim, Jae-Young;Lee, Woo-Jin
    • The KIPS Transactions:PartD
    • /
    • v.17D no.2
    • /
    • pp.147-156
    • /
    • 2010
  • Conformance testing for embedded software is to check whether software was correctly implemented according to software specification or not. In conformance testing, test scenarios must be extracted to cover every test cases of software. In a general way, test scenarios simply focus on testing all functions at least one time. But, test scenarios are necessary to consider efficiency of test execution. In this paper, we propose a test scenario extraction method by considering function's execution time and waiting time for user interaction. A test model is a graph model which is generated from state machine diagram and test cases in software specification. The test model is augmented by describing test execution time and user interaction information. Based on the test model, test scenarios are extracted by a modified Dijkstra's algorithm. Our test scenario approach can reduce testing time and improve test automation.

A Novel Approach for Deriving Test Scenarios and Test Cases from Events

  • Singh, Sandeep K.;Sabharwal, Sangeeta;Gupta, J.P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.213-240
    • /
    • 2012
  • Safety critical systems, real time systems, and event-based systems have a complex set of events and their own interdependency, which makes them difficult to test ma Safety critic Safety critical systems, real time systems, and event-based systems have a complex set of events and their own interdependency, which makes them difficult to test manually. In order to cut down on costs, save time, and increase reliability, the model based testing approach is the best solution. Such an approach does not require applications or codes prior to generating test cases, so it leads to the early detection of faults, which helps in reducing the development time. Several model-based testing approaches have used different UML models but very few works have been reported to show the generation of test cases that use events. Test cases that use events are an apt choice for these types of systems. However, these works have considered events that happen at a user interface level in a system while other events that happen in a system are not considered. Such works have limited applications in testing the GUI of a system. In this paper, a novel model-based testing approach is presented using business events, state events, and control events that have been captured directly from requirement specifications. The proposed approach documents events in event templates and then builds an event-flow model and a fault model for a system. Test coverage criterion and an algorithm are designed using these models to generate event sequence based test scenarios and test cases. Unlike other event based approaches, our approach is able to detect the proposed faults in a system. A prototype tool is developed to automate and evaluate the applicability of the entire process. Results have shown that the proposed approach and supportive tool is able to successfully derive test scenarios and test cases from the requirement specifications of safety critical systems, real time systems, and event based systems.

A Systematic Approach to Accident Scenario Analysis: Child Safety Seat Case Study (체계적 사고 시나리오 분석기법을 이용한 유아용 안전의자 사례연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • The objective of this paper is to describe a systematic accident scenario analysis method(SASA) adept at creating accident scenarios for the design of safer products. This approach was inspired by the Quality Function Deployment(QFD) method, which is conventionally used in quality management. In this study, the QFD provides a formal and systematic scheme to devise accident scenarios while maintaining objectivity. SASA consists of three key stages to be broken down into a series of consecutive steps:(1) developing an accident analysis tableau,(2) devising the accident scenarios using the accident analysis tableau,(3) performing a feasibility test, a clustering process and a patterning process, and finally(4) performing quantitative evaluation of each accident scenario. The SASA was applied to a case study of child safety seats. The accident analysis tableau devised 2828(maximum) accident scenarios from all possible relationships between the hazard factors and situation characteristics. Among them, 270 scenarios were devised through the feasibility test and the clustering process. The patterning process reduced them to 29 patterns representative of all accident scenarios. Based on an intensive analysis of the accident patterns, design guidelines for a safer child safety seat were recommended. The implications of the study on the child safety seat case were then discussed.