

Journal of Information Processing Systems, Vol.6, No.2, June 2010 DOI : 10.3745/JIPS.2010.6.2.197

197

Incremental Model-based Test Suite Reduction with
Formal Concept Analysis

Pin Ng*, Richard Y. K. Fung** and Ray W. M. Kong***

Abstract—Test scenarios can be derived based on some system models for
requirements validation purposes. Model-based test suite reduction aims to provide a
smaller set of test scenarios which can preserve the original test coverage with respect to
some testing criteria. We are proposing to apply Formal Concept Analysis (FCA) in
analyzing the association between a set of test scenarios and a set of transitions
specified in a state machine model. By utilizing the properties of concept lattice, we are
able to determine incrementally a minimal set of test scenarios with adequate test
coverage.

Keywords—Test Suite Reduction, Model-based Testing, State Machine Model, Formal
Concept Analysis

1. INTRODUCTION

Test scenarios can be derived based on some system models for requirements validation pur-
poses. Model-based testing [1, 16] refers to deriving a suite of test scenarios from a model that
represents the behavior of a software system. In particular, state machine model has been widely
used for this purpose in testing event-driven, reactive systems, and embedded software systems
[1, 2]. State machine model can be used to specify the dynamic perspective of a system and its
interactions with the users through sequences of transitions. The sequences of transitions can
form a set of test scenarios for validation of functional requirements by test engineers and end
users. However, since cycles in the state machine model may lead to an infinite number of test
scenarios, exhaustive testing is usually not possible. Moreover, many test scenarios are part of
some other test scenarios and thus lead to redundancy in the test suite. Model-based test suite
reduction can be applied in this situation and derive a smaller set of test scenarios which still
preserves the original test coverage with respect to some testing criteria. A default criterion of
adequate testing with a state machine model is all-transition coverage criterion [1, 11, 16],
which means each transition specified in the state machine model should be triggered at least
once by executing the test scenarios.

In this paper, we shall describe an incremental approach for reducing model-based test suite
using Formal Concept Analysis (FCA) [6]. FCA is a mathematical technique for formulating
concepts in terms of a set of formal objects and their associated formal attributes, and providing

Manuscript received March 15, 2010; accepted April 20, 2010.
Corresponding Author: Pin Ng
* Hong Kong Community College, Hong Kong Polytechnic University, Hong Kong (ccpng@hkcc-polyu.edu.hk)
** Dept. of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong.

(richard.fung@cityu.edu.hk)
*** Automatic Manufacturing Limited, Hong Kong (raykong@automatic.com.hk)

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

198

a systematic way of combining and organizing individual concepts of a given context into hier-
archically ordered conceptual structure, known as a concept lattice. In the context of transition
coverage, FCA can be applied to associate a set of test scenarios (as formal objects) with a set of
transitions (as formal attributes) specified in a state machine model, and to organize them to
form a concept lattice. By utilizing the properties of concept lattice, we are able to incrementally
determine a minimal set of test scenarios with adequate test coverage.

This paper is organized as follows. Section 2 discusses some related work. Section 3 presents
the application of FCA in test suite reduction. The proposed incremental approach for model-
based test suite reduction is explained in Section 4. Finally, Section 5 concludes our work.

2. RELATED WORK
Test suite reduction, in general, can be considered as a minimum set-covering problem [4]. A

classical approach for solving minimum set-covering problem is based on greedy heuristic [5].
When applying greedy heuristic for test scenario selection, first, the test scenario that covers the
most elements will be selected. Then, the test scenario that covers the most remaining elements
will be selected. The process will be repeated until all the elements have been covered. In case
there are multiple test scenarios covering the most and same amount of elements, one of the test
scenarios will arbitrarily selected. However, greedy heuristic may not always provide the opti-
mal test suite [12, 14].

For example, Table 1 shows the coverage of six transitions {t1, t2, t3, t4, t5, t6} by four test
scenarios {s1, s2, s3, s4}. Suppose that we would like to determine a reduced set of test scenar-
ios that can sufficiently cover all the transitions. When applying greedy heuristic, s1 will be se-
lected first for having the greatest coverage cardinality. Then s2 and s3 will also be selected for
covering the remaining transitions. Therefore, the greedy heuristic will derive a reduced test
suite of {s1, s2, s3}. However, the minimal test suite for this simple case, in fact, is {s2, s3}.
This example reveals a limitation of applying greedy heuristic in test suite reduction. With
greedy heuristic, we could have selected some test scenarios which may turn out to be redundant
when some other test scenarios are included in the test suite. Our proposed incremental approach,
which is based on FCA, can help to identify those redundant test scenarios so as to keep the test
suite minimal.

FCA has been applied to several software engineering problems [15], such as restructuring
program codes into more cohesive components, identifying class candidates in object oriented
design, and re-engineering class hierarchies. Most of such work applies FCA to model the gen-
eralization-specialization relationship, in which, a subclass inherits some features from its su-
perclasses within a class hierarchy; and to model the variables dependency relationship for de-

Table 1. A simple case

R t1 t2 t3 t4 t5 t6
s1 x x x x
s2 x x x
s3 x x x
s4 x x

Pin Ng, Richard Y. K. Fung and Ray W. M. Kong

199

sign recovery. Our approach makes use of the concept analysis mechanism to support incre-
mental reduction of model-based test suite with reference to state machine model, which is
widely used to model the behavioral perspective of software systems.

Having been inspired by FCA, Tallam and Gupta [14] presented a Delayed-Greedy heuristic
for selecting the minimum number of test cases which can exercise the given set of testing re-
quirements. Our mechanism differs from Tallam and Gupta’s approach in which, our testing
requirements are based on the test scenarios derived from state machine model; and our ap-
proach does not need to go through attribute reduction procedure as described in their Delayed-
Greedy algorithm. Because of the involvement of attribute reduction procedure, Tallam and
Gupta’s approach cannot support incremental update of the test suite in the situations that when
some new test cases have been incurred.

Sampath et al. [13] have applied FCA for test suite reduction in the domain of web applica-
tions testing, in which, each of the URLs used in a web session is considered as a formal attrib-
ute; whilst each web session is considered as a formal object which constitutes to be a test case.
The reduced test suite is obtained by selecting those test cases associated with the strongest con-
cepts (i.e. the concept nodes that are just above the bottom-most concept node in the concept
lattice). Although the method is able to support incremental selection of test cases, redundancy
may still exist among the strongest concepts and thus the reduced test suite may not be minimal.
By utilizing the incremental mechanism for updating the concept lattice structure, our approach
can iteratively locate for any test scenarios which turn out to be non-significant or redundant
when new test scenarios are added. These non-significant or redundant test scenarios will be
removed in order to keep the test suite minimal.

3. APPLYING FCA IN TEST SUITE REDUCTION

Formal Concept Analysis (FCA) provides a mathematical foundation for systematically com-
bining and organizing individual concepts of a given context into a hierarchically ordered con-
ceptual structure [6]. Given a binary relation R between a set of formal objects O and a set of
formal attributes A (that is, R ⊆ O × A), the tuple (O, A, R) forms a formal context. For a set of
objects, Oi ⊆ O, the set of common attributes, σ, is defined as:

σ (Oi) = { a ∈ A | ∀(o ∈ Oi) (o, a) ∈ R } (1)

Analogously, the set of common objects, τ, for a set of attributes, Ai ⊆ A, is defined as:

τ (Ai) = { o ∈ O | ∀(a ∈ Ai) (o, a) ∈ R } (2)

With reference to equations (1) and (2), a concept c can be defined as an ordered pair (Oi, Ai)

such that Ai = σ (Oi) and Oi = τ (Ai). That means, all and only objects in Oi share all and only
attributes in Ai. For a concept c = (Oi, Ai), Oi is called the extent of c, denoted by Extent(c), and
Ai is called the intent of c, denoted by Intent(c). The set of all concepts of a given formal context
forms a partial order by:

c1 ≤ c2 ⇔ Extent(c1) ⊆ Extent(c2); or equivalently, c1 ≤ c2 ⇔ Intent(c1) ⊇ Intent(c2). (3)

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

200

The partial order relation in equation (3) can be used to specify the meanings of subconcepts
and superconcepts. Given two concepts c1 and c2, if c1 ≤ c2 holds, c1 is called subconcept of c2;
or equivalently, c2 is called superconcept of c1.

The set of all concepts of a formal context and the partial ordering can be represented graphi-
cally using a concept lattice. A concept lattice consists of nodes that represent the concepts and
edges connecting these nodes. The nodes for concepts c1 and c2 are connected if and only if c1 ≤
c2 and there is no other concept c3 such that c1 ≤ c3 ≤ c2.

When applying FCA in model-based test suite reduction, the formal context for transition
coverage [9, 10] can be defined as a tuple (S, T, R), where:

‧S is a set of test scenarios (considered as formal objects);
‧T is a set of transitions (considered as formal attributes) that appear in the given state ma-

chine model;
‧a pair (scenario s, transition t) is in relation R if transition t is triggered when scenario s is

executed.

As an example, with reference to the transition coverage of the test scenarios given in Table 1,

a set of seven concepts that can be derived is shown in Table 2.
Fig. 1 depicts the concept lattice for the concepts listed in Table 2. Each concept node is la-

beled with the associated extent and intent elements. The Top concept, c1, of the concept lattice
is the most generalized concept − the superconcept to all other concepts; whereas the Bottom
concept, c7, is the most specialized concept − the subconcept to all other concepts.

The labeling of the lattice can be simplified for clarity by applying equations (4) and (5) so
that only the extent and intent elements which are most specific to a given concept are displayed.

AttributeLabels (c) = Intent (c) − Intent (cj)

∀cj ≥ c

ObjectLabels (c) = Extent (c) − Extent (ci)
∀c i ≤ c

(4)

(5)

The attribute labels are displayed slightly above the concept node whereas the object labels

are marked slightly below the node. Fig. 2 shows the concept lattice with a compact form of
labeling. The concept lattice structure can be used for checking the adequacy of test coverage
and determining a minimal set of test scenarios.

Table 2. List of concepts based on the simple case

{t1, t2, t3, t4, t5, t6}{ }c7

{t3, t4, t6}{s3} c6

{t1, t2, t5}{s2} c5

{t1, t2, t3, t4}{s1}c4

{t3, t4}{s1, s3}c3

{t1, t2}{s1, s2, s4}c2

{ }{s1, s2, s3, s4}c1

Intent ()Extent ()Concept

Pin Ng, Richard Y. K. Fung and Ray W. M. Kong

201

3.1 Adequacy of Test Coverage

In the context of transition coverage, the set of test scenarios is considered to be providing
adequate test coverage if when executing these test scenarios, each transition is triggered at least
once. With reference to the concept lattice, the adequacy of test coverage is indicated by:

AttributeLabels(Bottom) = ∅ ∧ ObjectLabels(Bottom) = ∅ (6)

The condition in equation (6) implies that every transition is covered by some test scenarios.

Therefore, the concept lattice shown in Fig.2 reveals that the test scenarios {s1, s2, s3, s4} are
sufficient enough to cover all transitions.

3.2 Minimal Set of Test Scenarios

A set of test scenarios is considered to be minimal if any one of the test scenarios is removed,
some of the transitions will not be covered by the remaining test scenarios. The concept lattice
structure can help in determining which test scenarios can be excluded from the test suite with-
out affecting the test coverage.

Definition 1: Non-significant test scenario
With reference to a concept lattice, a test scenario s is non-significant if:
(i) s ∈ ObjectLabels (c) ; and
(ii) there exists some concept c′ such that
 c ≥ c′ ≥ Bottom
A test scenario s is non-significant implies that its coverage of transitions is a subset to that of

at least one of the other test scenarios.

Definition 2: Redundant test scenario
With reference to a concept lattice, a test scenario s is redundant if:
(i) s ∈ ObjectLabels (c) ; and

C6

C4

C5

C2C3

C1

C7
Bottom

Top
({s1, s2, s3, s4} , { })

({s1, s2, s4} , {t1, t2})({s1, s3} , {t3, t4})

({s1} , {t1, t2, t3, t4})

({s2} , {t1, t2, t5})({s3} , {t3, t4, t6})

({ } , {t1, t2, t3, t4, t5, t6})

C6
C4

C5

C2C3

C1

C7

s2
s1

s3

s4

t5t6

t4
t3

t2
t1

Bottom

Top

Fig. 1. Concept lattice with full labeling Fig. 2. Concept lattice in compact form

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

202

(ii) there is no other concept c′ such that
 c ≥ c′ ≥ Bottom; and
(iii) AttributeLabels(c) = ∅
A test scenario s is redundant implies that it does not solely cover any transitions by itself.

With reference to the example shown in Fig. 2, by Definition 1, test scenario s4 is considered to
be non-significant; whereas, by Definition 2, s1 is considered to be redundant. The test suite can
be reduced whilst maintaining the adequacy of test coverage by removing those non-significant
test scenarios and redundant test scenarios. For example, Fig. 3 shows the revised concept lattice
after removing the test scenarios s4 and s1. The resultant test suite {s2, s3} is considered to be
minimal.

4. INCREMENTAL MODEL-BASED TEST SUITE REDUCTION
The software system may evolve as requirements change and thus lead to the need for addi-

tional test scenarios to be considered. In this section, we shall describe the incremental mecha-
nism that can support the incremental updates of the test suite.

The existence of incremental algorithms for updating concept lattices in the literature [3, 7]
make it possible to save the effort of reconstructing the whole lattice from scratch. Fig. 4 shows
the algorithm which built upon the incremental lattice update mechanism, including adding new
objects and removing existing objects [3, 7]. The algorithm starts with a set of test scenarios S
with an initial concept lattice L. Each test scenario is added to the concept lattice one by one. If
the test scenario turns out to be non-significant, it will be removed. In case some redundant test
scenarios exist in the updated concept lattice, they will also be removed from the lattice structure
in order to keep the test suite minimal. The process will be repeated until all test scenarios in S
have been considered. The output of the algorithm will be a set S′ which contains the minimal
set of test scenarios and the corresponding updated concept lattice L′.

As a working example, we demonstrate the incremental model-based test suite reduction
process with a case of Automated Teller Machine (ATM). ATM is a commonly used example in
the literature for explaining the modeling with state machine model [1, 8, 16]. Fig. 5 illustrates a
state machine model of a simplified ATM system. It models the interactions between a user and
the ATM. First, the ATM will perform user authentication by checking the validity of the ATM

s2s3

t5
t2
t1

t6
t4
t3

Bottom

Top

Fig. 3. Updated concept lattice for the minimized test suite {s2, s3}

Pin Ng, Richard Y. K. Fung and Ray W. M. Kong

203

card and password. Then, the user is allowed to choose the services for balance checking, money
withdrawal, or fund transfer, given that the user has sufficient balance in the bank account. In
validating the ATM system, a series of test scenarios will be applied in order to check whether
the ATM can perform according to the requirements specified in the state machine model. Each
test scenario will trigger a sequence of transitions which will cause changes in the states of the
system. For instance, the scenario of a valid money withdrawal will trigger the following se-
quence of transitions: t01→t02→ t04→ t08→ t012→ t15→ t16.

By traversing the state machine model, we can trace for a collection of feasible sequences of
transitions which forms a set of test scenarios as listed in Fig. 6. We can then apply the incre-
mental algorithm to consider each test scenario one by one so as to determine a minimal set of

Algorithm: incremental selection of test scenarios

Input: S = {s1, s2, … sn}, a set of test scenarios
 L, an initial concept lattice

Output: S′, a minimized subset of S,

with the same test coverage of S
 L′, an updated concept lattice containing

the elements of S′

procedure selectTestScenarios(S, L)
begin
 S′ := ∅
 L′ := L
 for each si ∈S do
 /* add new test scenario to the concept lattice */
 addObject(L′, si)
 S′ := S′ ∪ {si}

 /* check for non-significant test scenario */
 for each sj ∈ S′ do
 if sj is non-significant /* see Definition 1 */
 /* remove non-significant test scenario */
 removeObject(L′, sj)
 S′ := S′ \ {sj}
 endif
 endfor
 /* check for redundant test scenario */
 for each sj ∈ S′ do
 if sj is redundant /* see Definition 2 */
 /* remove redundant test scenario */
 removeObject(L′, sj)
 S′ := S′ \ {sj}
 endif
 endfor
 endfor
 return S′, L′
end

Fig. 4. Incremental selection of test scenarios

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

204

test scenarios.
With the inclusion of a new test scenario in each iteration, the concept lattice can help to

check whether such incremental update would lead to any existing test scenarios becoming non-
significant or redundant. If so, those non-significant or redundant test scenarios should be ex-
cluded from the set S′. Table 3 shows the inclusion and exclusion of test scenarios in each itera-
tion for the working example. The resultant concept lattice is shown in Fig. 7, which indicates

Checking
ATM card

Waiting for
password

Checking
password

Selecting
services

Terminating
operation

t02: valid ATM
card detected

t03: invalid ATM
card detected /
display error
message
and eject card

t04: password entered

t06: ‘exit’ button
pressed

t09: ‘exit’ button pressed

t13: ‘exit’ button pressed

t07: operation
terminated/
eject card

Processing
withdrawal

t16:
transaction
processed /
dispense cash
and eject card

t12: select
‘withdraw’

Displaying
balance

t11: ‘continue’
button pressedt10: select

‘check balance’

t15: amount entered [sufficient balance]

Entering
withdrawal
amount

t14: amount entered
[insufficient
balance] /
display error message

t01: ATM card
inserted

Initial
state

Final
state

Choosing
destination
account

t17: select
‘transfer’

Entering
transfer
amount

t19: amount entered
[insufficient
balance] /
display error message

t22: ‘exit’
button
pressed

t18: destination
account selected

t20: amount entered
[sufficient balance]

Processing
transfer

t21: transaction processed /
destination account credited

t05: password checked
[incorrect] /
display error message

t08: password
checked [correct]

Fig. 5. State machine model of an ATM system

Scenario s01: t01→ t03
Scenario s02: t01→ t02→ t06→ t07
Scenario s03: t01→ t02→ t04→ t05→ t06→ t07
Scenario s04: t01→ t02→ t04→ t08→ t09→ t07
Scenario s05: t01→ t02→ t04→ t08→ t10→ t11→ t09→ t07
Scenario s06: t01→ t02→ t04→ t08→ t10→ t11→ t12→ t13→ t07
Scenario s07: t01→ t02→ t04→ t08→ t12→ t13→ t07
Scenario s08: t01→ t02→ t04→ t08→ t12→ t14→ t13→ t07
Scenario s09: t01→ t02→ t04→ t08→ t12→ t15→ t16
Scenario s10: t01→ t02→ t04→ t08→ t10→ t11→ t17→ t18→ t22→ t07
Scenario s11: t01→ t02→ t04→ t08→ t17→ t18→ t22→ t07
Scenario s12: t01→ t02→ t04→ t08→ t17→ t18→ t19→ t22→ t07
Scenario s13: t01→ t02→ t04→ t08→ t17→ t18→ t20→ t21→ t09→ t07

Fig. 6. List of test scenarios

Pin Ng, Richard Y. K. Fung and Ray W. M. Kong

205

that, among the given test scenarios, seven of them are selected to form the minimal set of test
suite {s01, s03, s05, s08, s09, s12, s13}. By executing this set of test suite, all the transitions
specified in the state machine model will be triggered at least once. Some narrative texts can be
added as shown in Table 4 for completing the specification of the selected test scenarios. Later

Table 3. Inclusion and exclusion of test scenarios in S′

Iteration Add
scenario

Remove
scenario

Reason for
removal

The resultant S’

1

s01 - {s01}

2

s02 - {s01, s02}

3

s03 s02 s02 is
non-significant

{s01, s03}

4

s04 - {s01, s03, s04}

5

s05 s04 s04 is
non-significant

{s01, s03, s05}

6

s06 - {s01, s03, s05, s06}

7

s07 s07 s07 is
non-significant

{s01, s03, s05, s06}

8

s08 s06 s06 is
redundant

{s01, s03, s05, s08}

9

s09 - {s01, s03, s05, s08, s09}

10 s10 -

{s01, s03, s05, s08, s09, s10}

11 s11 s11 s11 is
non-significant

{s01, s03, s05, s08, s09, s10}

12 s12 s10 s10 is
redundant

{s01, s03, s05, s08, s09, s12}

13 s13 -

{s01, s03, s05, s08, s09, s12,
s13}

s01s09s08s12s13s05s03

t01

t04
t02

t08t07

t18
t17

t12

t09

t06
t05

t11
t10

t21
t20

t22
t19

t14
t13

t16
t15 t03

Top

Bottom

Fig. 7. List of test scenarios

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

206

on, if the software requirements of the ATM system evolve, extra test scenarios can be derived
from the revised state machine model. The set of new test scenarios will be used as the input to
the incremental algorithm for updating the concept lattice and determining the revised minimal
test suite.

5. CONCLUSION
FCA provides a mathematical foundation for combining and organizing individual concepts

of a given context to form a concept lattice. In this paper, we have applied FCA in incremental
model-based test suite reduction, with reference to the behavioral perspective of a system – state
machine model, through analyzing the transition coverage relationship of “ test scenario s covers
transition t” .

Software system may evolve as requirements change and thus lead to the need for additional
test scenarios to be considered. With the notion of concept lattice, the primary contributions of
this work are: (1) utilizing the properties of concept lattice in selecting a minimal set of test sce-
narios while maintaining adequate test coverage; and (2) supporting incremental update of the
minimal test suite to cater for the evolving software requirements.

REFERENCES
[1] R. V. Binder, Testing Object-Oriented Systems-Models, Patterns, and Tools, Object Technology.

Addison-Wesley, 2000.

Table 4. Specification of the selected test scenarios

Correct amount of money
transferred to the destination
account and ATM card ejected.

t01: ATM card inserted → t02: valid ATM card detected →
t04: password entered → t08: password checked [correct] →
t17: select ‘transfer’ → t18: destination account selected → t20:
amount entered [sufficient balance] → t21: transaction processed
→ t09: ‘exit’ button pressed → t07: operation terminated

Scenario s13:
“transfer with sufficient
balance”

ATM card ejected without any
transaction.

t01: ATM card inserted → t02: valid ATM card detected →
t04: password entered → t08: password checked [correct] →
t17: select ‘transfer’ → t18: destination account selected → t19:
amount entered [insufficient balance] → t22: ’exit’ button pressed
→ t07: operation terminated

Scenario s12:
“transfer with insufficient
balance”

Correct amount of cash
dispensed and ATM card ejected.

t01: ATM card inserted → t02: valid ATM card detected →
t04: password entered → t08: password checked [correct] →
t12: select ‘withdraw’ → t15: amount entered [sufficient balance]
→ t16: transaction processed

Scenario s09:
“withdrawal with sufficient
balance”

ATM card ejected without any
transaction.

t01: ATM card inserted → t02: valid ATM card detected →
t04: password entered → t08: password checked [correct] →
t12: select ‘withdraw’ → t14: amount entered [insufficient
balance] → t13: ‘exit’ button pressed → t07: operation terminated

Scenario s08:
“withdrawal with insufficient
balance”

Correct balance amount
displayed and ATM card ejected.

t01: ATM card inserted → t02: valid ATM card detected →
t04: password entered → t08: password checked [correct] →
t10: select ‘check balance’ → t11: ‘continue’ button pressed →
t09: ‘exit’ button pressed → t07: operation terminated

Scenario s05:
“checking balance”

ATM card ejected without any
transaction.

t01: ATM card inserted → t02: valid ATM card detected →
t04: password entered → t05: password checked [incorrect] →
t06: ‘exit’ button pressed → t07: operation terminated

Scenario s03:
“Incorrect password”

Warning message displayed and
ATM card ejected without any
transaction.

t01: ATM card inserted→ t03: invalid ATM card detectedScenario s01:
“Invalid ATM card”

Expect ResultsSequences of Transitions Selected Test Scenarios

Pin Ng, Richard Y. K. Fung and Ray W. M. Kong

207

[2] B. Broekman and E. Notenboom, Testing Embedded Software, Addison-Wesley, 2003.
[3] C. Carpineto and G. Romano, Concept Data Analysis: Theory and Applications, Wiley, 2004.
[4] T.Y. Chen and M.F. Lau, “A New Heuristic for Test Suite Reduction,” Information and Software

Technology, 40, 1998, pp.347-354.
[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, Sec-

ond Edition, 2001.
[6] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer-Verlag, 1999.
[7] R. Godin, R. Missaoui, and H. Alaoui, “Incremental Concept Formation Algorithms Based on Galois

(Concept) Lattices,” Computational Intelligence, 11(2), 1995, pp.246-267.
[8] P.V.R. Murthy, P.C. Anitha, M. Mahesh, and R. Subramanyan, “ Test ready UML statechart models,”

Proceedings of the 2006 international workshop on scenarios and state machines: models, algorithms,
and tools, SCESM ’06, May, 2006, pp.75-81.

[9] P. Ng and R.Y.K. Fung, “Applying Formal Concept Analysis in Requirements Validation with UML
State Machine Model,” International Journal of Computer & Information Science, Vol. 8, No. 4, De-
cember 2007, pp.550-559.

[10] P. Ng and R.Y.K. Fung, “Model-Based Test Suite Reduction with Concept Lattice,” Proceedings of
Advanced Software Engineering and Its Applications, ASEA 2008, Dec., 2008, pp.3-8.

[11] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating Test Data from State-based Specifica-
tions,” Software Testing, Verification and Reliability, Vol.13, Iss. 1, 2003, pp.25-53.

[12] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “ Prioritizing Test Cases for Regression Testing,”
IEEE Transactions of Software Engineering, Vol. 27, No. 10, Oct., 2001, pp.929-948.

[13] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock, “A Scalable Approach to User-Session based
Testing of Web Applications through Concept Analysis,” Proceedings of 19th International Confer-
ence on Automated Software Engineering, ASE ’04, Linz, Austria, 2004, pp.132-141.

[14] S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm for test suite minimization,”
The 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineer-
ing, PASTE ’05, 2005, pp.35-42.

[15] T. Tilley, R. Cole, P. Becker, and P. Eklund, “A Survey of Formal Concept Analysis Support for
Software Engineering Activities,” Formal Concept Analysis, LNAI 3626, B. Ganter et al. (Eds.),
Springer-Verlag Berlin Heidelberg, 2005, pp.250-271.

[16] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach, Morgan Kaufmann,
2007.

Pin Ng
Pin Ng is a qualified CISA (Certified Information Systems Auditor) and currently a
lecturer at the Hong Kong Community College - Hong Kong Polytechnic Univer-
sity. He received an MSc degree in Operational Research from University of
Warwick, UK. and M. Phil. in Software Engineering from University of Hong Kong.
He is currently pursuing an engineering doctorate degree, under the supervision
of Dr. Richard Y. K. Fung, at City University of Hong Kong. His research focuses
on the application of formal mechanisms in software requirements engineering.

Incremental Model-based Test Suite Reduction with Formal Concept Analysis

208

Richard Y. K. Fung
Richard Y. K. Fung obtained a B.Sc.(Hons) degree in Production Engineering
and a Master of Philosophy (M.Phil.) degree in Manufacturing Resource Plan-
ning, both from the Aston University in Birmingham, UK. Subsequently, he was
awarded a Ph.D. degree in Customer Requirements Management by Loughbor-
ough University, UK. He worked in the industry for over twelve years, having
been involved in different manufacturing areas including product development,
production planning and control, design and implementation of management

information systems, and management consultancy in the UK. Dr. Fung joined the City University of
Hong Kong in 1989, and he is now an Associate Professor and the Director of the Laboratory of Enter-
prise Knowledge Integration and Transfer in the Department of Manufacturing Engineering and Engi-
neering Management. His current scope of teaching and research covers Knowledge Management,
Quality Management, Customer Requirements Analysis, Quality Function Deployment, Supply Chain
and Logistics Management, Product Lifecycle Management, and the applications of Artificial Intelli-
gence Techniques in the industry.

Ray W. M. Kong
Ray W. M. Kong is a qualified member of IEEE (Institute of Electrical and Elec-
tronics Engineering) for over eleven years. He obtained an MSc degree in Auto-
mation System and Management in the Department of Manufacturing Engineer-
ing and Engineering Management from City University of Hong Kong in 1998.
Further, he was awarded an Engineering Doctorate degree in the City University
of Hong Kong in 2008. He has worked at management level in the manufacturing
and operation sectors in the electronics, toys, apparel and information technol-

ogy industry for over twelve years. He is now an assistant general manager in Automatic Manufacturing
Limited in Hong Kong.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

