• Title/Summary/Keyword: test plant

Search Result 3,792, Processing Time 0.033 seconds

Study of the Curing Time of Cementless Cold Central Plant Recycled Asphalt Base-Layer through Field-Application Review (무시멘트 상온 재활용 아스팔트 기층의 현장 적용성을 통한 양생기간에 관한 연구)

  • Choi, Jun Seong;Jung, Chul Ho;Lee, Chan Hee;Lim, in su
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : The objective of this study is to ascertain the curing period of cementless cold central plant recycled asphalt base-layer, using mechanical analyses and specimen quality tests on the field. METHODS : Cold central plant recycled asphalt base-layer mixture was produced in the plant from reclaimed asphalt, natural aggregate, filler for the cold mix, and the modified emulsion AP using asphalt mix design and plant mix design. In order to examine the applicability of the curing period during the field test, the international standards for the possibility of core extraction and the degree of compaction and LFWD deflection were analyzed. Moreover, Marshall stability test, porosity test, and indirect tensile strength test were performed on the specimens of asphalt mix and plant mix design. RESULTS : The plant production process and compaction method of cementless cold central plant recycled asphalt base-layer were established, and the applicability of the optical moisture content for producing the mixture was verified through the field test. In addition, it was determined that the core extraction method of the conventional international curing standard was insufficient to ensure performance, and the LFWD test demonstrated that the deflection converges after a two-day curing. However, the back-calculation analysis reveals that a three-day curing is satisfactory, resulting in a general level of performance of dense asphalt base-layer. Moreover, from the result of the specimen quality test of the asphalt mix design and plant mix design according to the curing period, it was determined that the qualities satisfied both domestic and international standards, after a two-day curing. However, it was determined that the strength and stiffness after three-day curing are higher than those after a two-day curing by approximately 3.5 % and 20 %, respectively. CONCLUSIONS:A three-day curing period is proposed for the cementless cold central plant recycled asphalt base-layer; this curing period can be demonstrated to retain the modulus of asphalt-base layer in the field and ensure stable quality characteristics.

Plant Minimum Stable Load (Pmin) Test for Ilijan CCPP

  • Kim, Si Moon;Yun, Wan No;Jang, Cheol Ho;Park, Se Ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • This paper describes the test results of plant minimum stable load (Pmin) for Ilijan Power Plant. The test was conducted on May 13 through 14, 2015 to investigate the plant operating and equipment condition in accordance with "Ilijan Plant Performance Test Procedure on Plant Minimum Stable Load" [1]. This paper also contains the assessment of the impact of Pmin to plant operating parameters and possible technical operating issues when operating at lower loads and to recommend the safe minimum load operation of Ilijan per block. In addition, this paper describes the performance calculation results of efficiency and heat rate depending on the load level.

Loss of a Main Feedwater Pump Test Simulation Using KISPAC Computer Code

  • Jeong, Won-Sang;Sohn, Suk-Whun;Seo, Ho-Taek;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 1996
  • Among those tests performed during the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3&4) Power Ascension Test period, the Loss of a Main Feedwater Pump test at l00% power is one of the major test which characterize the capability of YGN 3&4. In this event, one of the two normally operating main feedwater pumps is tripped resulting in a 50% reduction in the feedwater flow. Unless the NSSS and Turbine/Generator control systems actuate properly, the reactor will be tripped on low SG water level or high pressurizer pressure. The test performed at Unit 3 was successful by meeting all acceptance criteria, and the plant was stabilized at a reduced power level without reactor trip. The measured test data for the major plant parameters are compared with the predictions made by the KISPAC computer code, an updated best-estimate plant performance analysis code, to verify and validate its applicability. The comparison results showed good agreement in the magnitude as well as the trends of the major plant parameters. Therefore, the KISPAC code can be utilized for the best-estimate nuclear power plant design and simulation tool after a further verification using other plant test data.

  • PDF

A study on the developing the diagnosis technology and expert system in fossil power plant (화력발전설비 진단기술 및 전문가 시스템개발에 관한 연구)

  • Baik, Young-Min;Jeong, Hee-Don;Shin, Eun-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.642-648
    • /
    • 2008
  • In order to analyze the causes of fossil power plant facilities due to a degradation and corrosion, artificial degraded materials composed of the facilities were manufactured. Various experiment were performed based on mechanical test, microstructure observation, hardness test, electrochemical potentiokinetic reactivation test(EPR) and corrosion scale thickness measurement test. The master curves were write out using Larson-Miller parameter to evaluate the degree of degradation with the above diagnosis methods. These data were applied to materials database of fossil power plant diagnosis. Finally expert system on the fossil power plant diagnosis was developed using the master curves and diagnosis algorithms.

  • PDF

The Mock-Up Test for Applying Rebar Modularization to the Wall of Nuclear Power Plant (원전 벽체구조물의 철근모듈화 적용을 위한 Mock-Up 실험연구)

  • Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.7-8
    • /
    • 2016
  • We are developing the technology for applying the Rebar Modularization Method to the Nuclear Power Plant Structures. To achieve this, we had developed the elementary technology for applying this method to Nuclear Power Plant Structures efficiently and performed the Mock-Up Test by using the developed elementary technology. By analysing this test result, we deduced the problems and found solutions to solve them.

  • PDF

Expression of the VP2 protein of feline panleukopenia virus in insect cells and use thereof in a hemagglutination inhibition assay

  • Yang, Dong-Kun;Park, Yeseul;Park, Yu-Ri;Yoo, Jae Young;An, Sungjun;Park, Jungwon;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • Feline panleukopenia virus (FPV) causes leukopenia and severe hemorrhagic diarrhea, killing 50% of naturally infected cats. Although intact FPV can serve as an antigen in the hemagglutination inhibition (HI) test, an accidental laboratory-mediated infection is concern. A non-infectious diagnostic reagent is required for the HI test. Here, we expressed the viral protein 2 (VP2) gene of the FPV strain currently prevalent in South Korea in a baculovirus expression system; VP2 protein was identified by an indirect immunofluorescence assay, electron microscopy (EM), Western blotting (WB), and a hemagglutination assay (HA). EM showed that the recombinant VP2 protein self-assembled to form virus-like particles. WB revealed that the recombinant VP2 was 65 kDa in size. The HA activity of the recombinant VP2 protein was very high at 1:215. A total of 143 cat serum samples were tested using FPV (HI-FPV test) and the recombinant VP2 protein (HI-VP2 test) as HI antigens. The sensitivity, specificity, and accuracy of the HI-VP2 test were 99.3%, 88.9%, and 99.3%, respectively, compared to the HI-FPV test. The HI-VP2 and HI-FPV results correlated significantly (r = 0.978). Thus, recombinant VP2 can substitute for intact FPV as the serological diagnostic reagent of the HI test for FPV.

Evaluation of hemagglutination inhibition test for canine respiratory coronavirus antibodies and seroprevalence in Korean dogs

  • Lee-Sang Hyeon;Dong-Kun Yang;Yu-Ri ,Park;Hye Jeong Lee;Ha-Hyun Kim;Bang-Hun Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.4
    • /
    • pp.37.1-37.7
    • /
    • 2023
  • Canine respiratory coronavirus (CRCoV) is a significant pathogen that causes respiratory diseases in dogs, collectively known as a canine infectious respiratory disease. The virus is highly contagious and exhibits high seroprevalence worldwide. Currently, bovine coronavirus (BCoV) enzyme-linked immunosorbent assay (ELISA) kits are used to detect CRCoV antibodies. However, BCoV-ELISA kits cannot differentiate between infections caused by BCoV and those caused by CRCoV. In this study, we evaluated the hemagglutination inhibition (HI) test for CRCoV by comparing it with the virus neutralization (VN) test. Subsequently, we evaluated the seroprevalence of CRCoV in 383 dog serum samples collected from South Korea utilizing the HI test. The HI test for CRCoV showed a strong correlation with the VN test (R = 0.83, p < 0.001). The analysis of seroprevalence revealed that 52.2% (95% confidence interval [CI], 47.2%-57.1%) of the Korean dog serum samples were positive. The seroprevalence exhibited varied with age, with a positivity rate of 43.9% in dogs under 1 year of age and 66.7% in dogs aged 3 to 5 years (odds ratio, 2.54; 95% CI, 1.43-4.59). In conclusion, the HI test to monitor CRCoV antibody proved to be closely related to the VN test. Furthermore, over half of the dogs in Korea tested positive for CRCoV antibodies. These findings contribute to a better understanding of the sero-epidemiology of CRCoV.

An Experimental Study on the High Early Strength Development Properties of Concrete according to Batcher Plant Test and Mock-up Test (배쳐플랜트배합시험 및 실대부재시험을 통한 콘크리트의 조기강도 발현특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, batcher plant composition test and mock-up test were carried out to conduct comparison and analysis on flow behavior and strength properties of concrete at early age. As a result, it was found that slump and amount of air in batcher plant composition test reached the target range. As for compressive strength, composition using HESPC showed the most excellent strength development. In mock-up test which was carried out to find out the strength properties, two methods with specimen and core test body both revealed HESPC as the most excellent composition. However, strength estimation with ultrasonic survey presented less reliable data. As a result of the previously conducted indoor composition test and the mock-up test in this study, target performance of concrete at early age was 4day/cycle. It was found that the optimum conditions that meet the required strength, 5MPa/18hr and 14MPa/36hr in mullion and transom are; curing temperature above 15℃, W/B 45%, unit-water 165kg/㎥ and CHC cement.

  • PDF

A Study on the Selection of Maxium Plant Efficiency through the Performance Test in Snper-Critical Power Plant (초임계압형 화력발전소의 성능시험을 통한 최고효율점 선정에 관한 연구)

  • Kwon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.402-407
    • /
    • 2003
  • The main reason to select the maxium plant efficiency through the performance test in fossil power plant is to increase the efficiency of power plant as well as saving energy collated with the policy of government. This study is aimed at unerstanding the variantion trend of efficiency and analyzing the efficiency of boiler and turbine through each of the performance test. Ultimately, the maxium efficiency of power plant will be presented in super-critical pressure type power plant.

  • PDF

The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant (석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.