• Title/Summary/Keyword: test pile

Search Result 1,133, Processing Time 0.024 seconds

Shaft resistance of bored cast-in-place concrete piles in oil sand - Case study

  • Barr, L.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.119-142
    • /
    • 2013
  • Pile load tests using Osterberg cells (O-cell) were conducted on cast-in-place concrete piles founded in oil sand fill and in situ oil sand at an industrial plant site in Fort McMurray, Alberta, Canada. Interpreted pile test results show that very high pile shaft resistance (with the Bjerrum-Burland or Beta coefficient of 2.5-4.5) against oil sand could be mobilized at small relative displacements of 2-3% of shaft diameter. Finite element simulations based on linear elastic and elasto-plastic models for oil sand materials were used to analyze the pile load test measurements. Two constitutive models yield comparable top-down load versus pile head displacement curves, but very different behaviour in mobilization of pile shaft and end bearing resistances. The elasto-plastic model produces more consistent matching in both pile shaft and end bearing resistances whereas the linear elastic under- and over-predicts the shaft and end bearing resistances, respectively. The mobilization of high shaft resistance in oil sand under pile load is attributed to the very dense and interlocked structure of oil sand which results in high matrix stiffness, high friction angle, and high shear dilation.

A Study on the Negative Skin Friction Depending upon the Locations of Piles in a Group Using Model Test (모형시험을 통한 무리말뚝 내 단독말뚝의 위치별 부주면마찰력에 관한 연구)

  • Lim, Jong-Seok;Park, Jong-Hee;Sim, Jong-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1077-1087
    • /
    • 2010
  • Generally most of pile foundations are constructed with group pile rather than single pile. The study on efficiency and bearing capacity which are major elements for rational design of this group pile has been actively progressed, whereas there are truly only a few studies of negative skin friction working on group pile due to the consolidation of ground. The purpose of this study is to determine, among the elements of negative skin friction applied to pile, the occurrence modality of negative skin friction at center, side, and corner of $3{\times}3$ group pile using model test and, based on those observations, to propose the effective design direction of group pile.

  • PDF

The Settlement Characteristics of Large Drilled Shafts Embedded into the Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong, Won-Pyo;Yea, Geu-Guwen;Nam, Jung-Man;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this study is to investigate the settlement characteristics of large drilled shafts embedded into bed rocks. To perform this research, 35 pile load test results for the large drilled shafts are used, because these deep foundations generally used as substructure systems for grand bridges. In case of the yield load can not be easily determined by load(P)-settlement(S) curve from the pile load test at the maximum loads, the standard settlements which can determine a yield load is established. The residual settlement equation of pile embedded in gneiss and igneous rocks is presented in this study. Also a equation is proposed to characterize the relationship between loads and elastic settlements in pile load tests on the large drilled shaft embedded into bedrock. Then, large drilled shaft's settlement characteristics are examined on pile length, pile diameter and pile's socked depth into rock at the pile tip.

  • PDF

Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging (폐색정도를 고려한 개단말뚝의 지지력 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

Behavior of PHC Pile Connected by Bolted Rectangular Steel Tubular (볼트식 각관형식으로 이음된 PHC 말뚝의 거동)

  • Yoon, Won-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • In this study, the applicability of PHC pile jointing method using rectangular steel tubular was studied. PHC pile joints are welded and bolt assembly. The bolt assembly method is a method that improves the various problems of welded joints. Numerical analysis and tests were conducted to analyze the applicability of the PHC pile jointing method using a rectangular steel tubular. The tests were carried out to test the material properties of the rectangular steel tubular material and the bending test of the pile joints. The numerical analysis was interpreted in the same conditons as the tests conditions. As a result, the material strength of each rectangular steel tubular could be used as a joint material. In the bending test, it was evaluated as a sTable material above the allowable stress of piles. In the numerical analysis results under the same conditions as the tests, it was possible to apply the pile joint material without exceeding the allowable stress of the material.

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

Development of an integrated Web-based system with a pile load test database and pre-analyzed data

  • Chen, Yit-Jin;Liao, Ming-Ru;Lin, Shiu-Shin;Huang, Jen-Kai;Marcos, Maria Cecilia M.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-53
    • /
    • 2014
  • A Web-based pile load test (WBPLT) system was developed and implemented in this study. Object-oriented and concept-based software design techniques were adopted to integrate the pile load test database into the system. A total of 673 case histories of pile load test were included in the database. The data consisted of drilled shaft and driven precast concrete pile axial load tests in drained, undrained, and gravel loading conditions as well as pre-analyzed data and back-calculated design parameters. Unified modeling language, a standard software design tool, was utilized to design the WBPLT system architecture with five major concept-based components. These components provide the static structure and dynamic behavior of system message flows in a visualized manner. The open-source Apache Web server is the building block of the WBPLT system, and PHP Web programming language implements the operation of the WBPLT components, particularly the automatic translation of user query into structured query language. A simple search and inexpensive query can be implemented through the Internet browser. The pile load test database is helpful, and data can be easily retrieved and utilized worldwide for research and advanced applications.

Predictions of PC Pile Shaft Resistance by CPT Data (콘관입시험자료를 기초로 한 PC말뚝의 주면마찰력 예측)

  • 윤길림;이영남
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 1998
  • Three prestressed concrete(PC) piles were installed for research purpose at Seosan area of west sea of Korea, and also cone penetration tests (CPT) were performed near two pile locations in order to compute PC pile shaft resistance by using CPT data measured. Three common CPT prediction methods that ia, Schmertmann method, Tumay Sl Fakroo method and LCPC method in France were used to predict pile shaft resistance. The pile shaft resistance predicted by each method was compared with that obtained by full-scale loading test and pile driving analyzer to estimate reliability of each prediction method. The predicted resistances based on three CPT-based methods underestimated significantly the resistances obtained from by fullrcale loading test, performed at 25 days and 42 days text pile installtion. There were, however, good agreements of predicted shaft resistance of piles between three CPT-based methods and pile driving analyzer tested two weeks after pile installtion.

  • PDF