DOI QR코드

DOI QR Code

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine, Haouari (Laboratory NEIGE, Department of civil engineering, Faculty of Technology, University of Blida) ;
  • Ali, Bouafia (Laboratory NEIGE, Department of civil engineering, Faculty of Technology, University of Blida)
  • Received : 2022.03.07
  • Accepted : 2022.12.17
  • Published : 2023.01.10

Abstract

In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Keywords

Acknowledgement

The authors are thankful to the scientific directorate of the IFSTTAR to provide them an official permission to use the experimental data of the site Plancoet.

References

  1. Abadie, C. and Byrne, B, (2014). "Cyclic loading response of monopile foundations in cohesionless soils", Physical Modelling in Geotechnics - Proceedings of the 8th International Conference on Physical Modelling in Geotechnics (ICPMG2014), Perth, Australia. https://doi.org/10.1201/b16200.  
  2. Adeel, M.B., Aaqib, M., Pervaiz, U., Rehman, J.U. and Park, D. (2022), "Numerical response of pile foundations in granular soils subjected to lateral load", Geomech. Eng., 28(1), 11-23. https://doi.org/10.12989/gae.2021.28.1.011.  
  3. AFNOR (2005)m Reconnaissance et essais geotechniques - Denomination, description et classification des sols - Partie 2 : principes pour une classification.  
  4. AFNOR (2012), Justification des ouvrages geotechniques - Normes d'application nationale de l'Eurocode 7 - Fondations profondes. Norme francaise NF P94-262.  
  5. Allotey, N. and El Naggar, M. H. (2008), "A numerical study into lateral cyclic nonlinear soil-pile response", Can. Geotech. J., 45(9), 1268-1281. https://doi.org/10.1139/T08-050.  
  6. API (2007), RP 2A-WSD Recommended practice for planning, designing, and constructing fixed offshore platforms: working stress design. American Petroleum Institute.  
  7. Ashour, M. and Norris, G. (2000), "Modeling lateral soil-pile response based on soil-pile interaction", J. Geotech. Geoenviron. Eng., 126(5), 420-428. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420).  
  8. Baguelin, F. and Jezequel, J. (1972), "Etude experimentale du comportement de pieux sollicites horizontalement", Bull. Liais. Lab. Ponts Chauss., (62), 308-322.  
  9. Baguelin, F., Frank, R. and Jezequel, J.F. (1989), "Interpretations d'essais de chargement lateral d'un pieu isole", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, Brazil. https://www.issmge.org/publications/publication/interpretationsdessais-de-chargement-lateral-dun-pieu-isole.  
  10. Baguelin, F., Meimon, Y. and Jezequel, J.F. (1985), "Chargements lateraux sur un groupe des pieux", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, USA.  
  11. Barari, A., Zeng, X., Rezania, M. and Ibsen, L.B. (2021), "Three-dimensional modeling of monopiles in sand subjected to lateral loading under static and cyclic conditions", Geomech. Eng., 26(2), 175-190. https://doi.org/10.12989/gae.2021.26.2.175.  
  12. Bouafia, A. (1994), "Etude experimentale du chargement lateral cyclique repete des pieux isoles dans le sable en centrifugeuse", Can. Geotech. J., 31(5), 740-748. https://doi.org/10.1139/t94-085.
  13. Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons, Hoboken, New Jersey. https://doi.org/10.1002/9781118686195.  
  14. Cassan, M. (1978), Les essais in situ en mecanique des sols. 1. Realisation et interpretation. Eyrolles, Paris. 
  15. CCTG (1993), Regles techniques de conception et de calcul des fondations des ouvrages de genie civil, Fascicule 62 titre V. Ministere de l'Equipement, du Logement et des Transports.  
  16. Chiou, J.S., Xu, Z.W., Tsai, C.C. and Hwang, J.H. (2018), "Lateral cyclic response of an aluminum model pile in sand", Mar. Georesour. Geotech., 36(5), 554-563. https://doi.org/10.1080/1064119X.2017.1351504.  
  17. Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079.  
  18. Cuellar, P. (2011), "Pile foundations for offshore wind turbines: Numerical and experimental investigations on the behaviour under short-term and long-term cyclic loading", Doctoral Thesis in German, Technische Universitat Berlin, Fakultat VI - Planen Bauen Umwelt, Berlin, Germany. https://doi.org/10.14279/depositonce-2760.  
  19. Dassault Systemes Simulia "ABAQUS 2016 Documentation", [computer program] Available at: http://130.149.89.49:2080/v2016/index.html  
  20. Degny, E., Frank, R. and Hadjadji, T. (1994), "Interpretation d'essais de pieux sous charges laterales", Proceedings of the 13th ICSMFE, New-Delhi, India.  
  21. Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Div., 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458.  
  22. Fenu, L., Briseghella, B. and Marano, G.C. (2019), "Simplified method to design laterally loaded piles with optimum shape and length", Struct. Eng. Mech., 71(2), 119-129. https://doi.org/10.12989/sem.2019.71.2.119.  
  23. Gazioglu, S.M. and O'Neill, M.W. (1984), "Evaluation of P-Y relationships in cohesive soils", Analysis and Design of Pile Foundations, ASCE, 192-213.  
  24. Hadjadji, T., Frank, R. and Degny, E. (2002), Analyse du comportement experimental de pieux sous chargements horizontaux. Geotechnique et risques naturels, Laboratoire Central des Ponts et Chaussees (LCPC), France.  
  25. Hettler, A. (1981), "Verschiebungen starrer und elastischer Grundungskorper in Sand bei monotoner und zyklischer Belastung", Doctoral Thesis [in German], Veroffentlichungen des Instituts fur Bodenmechanik und Felsmechanik der Universitat Karlsruhe, Germany, Heft 90, 127.  
  26. Hinz, P. (2009), "Beurteilung des Langzeitverhaltens zyklisch horizontal belasteter Monopile-Grundung." Doctoral Thesis [in German], Mitteilungen aus dem Fachgebiet Grundbau und Bodenmechanik, Universitat Duisburg-Essen, Germany, Heft 37, 182.  
  27. IGtHPile Version 3.01 (2015), "Design software for axially and laterally loaded foundation piles", Institute and for Geotechnical Engineering (IGtH), Leibniz University Hannover, Germany. [computer program]. Available at: https://www.igth.unihannover.de/en/research/igth-pile/  
  28. Klinkvort, R.T. and Hededal, O. (2013), "Lateral response of monopile supporting an offshore wind turbine", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 166(2), 147-158. https://doi.org/10.1680/geng.12.00033.  
  29. LeBlanc, C., Houlsby, G.T. and Byrne, B.W. (2010), "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, 60(2), 79-90. https://doi.org/10.1680/geot.7.00196.  
  30. Li, Z., Haigh, S.K. and Bolton, M.D. (2010), "Centrifuge modelling of mono-pile under cyclic lateral loads", Proceedings of the 7th International Conference on Physical Modelling in Geotechnics, Zurich.  
  31. Lin, S.S. and Liao, J.C. (1999), "Permanent strains of piles in sand due to cyclic lateral loads", J. Geotech. Geoenviron. Eng., 125(9), 798-802. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(798).  
  32. Long, J.H. and Vanneste, G. (1994), "Effects of cyclic lateral loads on piles in sand", J. Geotech. Eng., 120(1), 225-244. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225).  
  33. Matlock, H. (1970), "Correlation for design of laterally loaded piles in soft clay", Proceedings of the 2nd Offshore Technology Conference, Houston, Texas, April. https://doi.org/10.4043/1204-MS.  
  34. Meimon, Y., Baguelin, F. and Jezequel, J. (1986), "Comportement d'un groupe de pieux sous chargement lateral monotone et cyclique de longue duree", 3e Colloque international sur les methodes numeriques de calcul des pieux pour les ouvrages en mer, Nantes, France.  
  35. Menard, L. (1967), Regles d'utilisation des techniques pressiometriques et d'exploitation des resultats obtenus pour le calcul des fondations. Notice generale D60.  
  36. Nicolai, G. and Ibsen, L.B. (2015), "Investigation on monopiles behavior under cyclic lateral loads in dense sand", Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA.  
  37. Niemunis, A., Wichtmann, T. and Triantafyllidis, Th. (2005), "A high-cycle accumulation model for sand", Comput. Geotech., 32(4), 245-263. https://doi.org/10.1016/j.compgeo.2005.03.002.  
  38. Norris, G. (1986), "Theoretically based BEF laterally loaded pile analysis", Proceedings of the 3rd international conference on numerical methods in offshore piling, Paris, France.  
  39. Peralta, P. (2010), "Investigations on the behavior of large diameter piles under long-term lateral cyclic loading in cohesionless soil", Institut fur Geotechnik (IGtH), Leibnitz Universitat Hannover, Hannover.  
  40. Poulos, H.G. (1988), Marine geotechnics. Unwin Hyman, London.
  41. Reese, L.C. and Impe, W.F.V. (2010), Single piles and pile groups under lateral loading, CRC Press, Leiden ; Boca Raton. https://doi.org/10.1201/b17499  
  42. Reese, L.C. and Welch, R.C. (1975), "Lateral loading of deep foundations in stiff clay", J. Geotech. Eng. Div. - ASCE, 101(7), 633-649.   https://doi.org/10.1061/AJGEB6.0000177
  43. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceedings of the 6th Annual Offshore Technology Conference, Houston, Texas, May. https://doi.org/10.4043/2080-MS.  
  44. Reese, L.C., Cox, W.R. and Koop, F.D. (1975), "Field testing and analysis of laterally loaded piles in stiff clay", Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, May. https://doi.org/10.4043/2312-MS.  
  45. Rosquoet, F., Thorel, L., Garnier, J. and Canepa, Y. (2007), "Lateral cyclic loading of sand-installed piles", Soils Found., 47(5), 821-832. https://doi.org/10.3208/sandf.47.821.  
  46. Smith, T.D. (1983), "Pressuremeter design method for single piles subjected to static lateral load", PhD thesis, Texas A & M University. https://hdl.handle.net/1969.1/DISSERTATIONS541480.  
  47. Staubach, P., Machacek, J., Sharif, R. and Wichtmann, T. (2021), "Back-analysis of model tests on piles in sand subjected to long-term lateral cyclic loading: Impact of the pile installation and application of the HCA model", Comput. Geotech., 134, 104018. https://doi.org/10.1016/j.compgeo.2021.104018.  
  48. Staubach, P., Machacek, J., Tafili, M. and Wichtmann, T. (2022), "A high-cycle accumulation model for clay and its application to monopile foundations", Acta Geotech., 17, 677-698. https://doi.org/10.1007/s11440-021-01446-9.  
  49. Staubach, P., Machacek, J., Tschirschky, L. and Wichtmann, T. (2022), "Enhancement of a high-cycle accumulation model by an adaptive strain amplitude and its application to monopile foundations", Int. J. Numer. Anal Methods, 46, 315-338. https://doi.org/10.1002/nag.3301.  
  50. Sullivan, W.R., Reese, L.C. and Fenske, C.W. (1980), "17. Unified method for analysis of laterally loaded piles in clay", Numer. Method. Offshore Pili., 135-146. https://www.icevirtuallibrary.com/doi/abs/10.1680/nmiop.00865.0017.  
  51. Swane, I.C. (1983), The Cyclic Behaviour of Laterally Loaded Piles. University of Sydney.  
  52. Tasan, H.E. (2011), "Zur Dimensionierung der Monopile-Grundungen von Offshore-Windenergieanlagen", Doctoral Thesis [in German], Technische Universitat Berlin, Fakultat VI - Planen Bauen Umwelt, Berlin, Germany, 174. https://doi.org/10.14279/depositonce-2786.  
  53. Tuladhar, R., Maki, T., and Mutsuyoshi, H. (2008). "Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil", Earthq. Eng. Struct. D., 37(1), 43-59. https://doi.org/10.1002/eqe.744.  
  54. Winkler, E. (1867), "Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rucksicht auf ihre Anwendung in der Technik fur polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architekten, etc", [In German], Domenicus, Prag, 424.  
  55. Yang, Y., Gao, X., Wu, W. and Xing, K.A. (2021), "A simplified method for analysis of laterally loaded piles considering cyclic soil degradation", Adv. Civil Eng., 9096540. https://doi.org/10.1155/2021/9096540.