• 제목/요약/키워드: test pile

Search Result 1,140, Processing Time 0.027 seconds

A Study on the Behavior of Soft Clay Foundation Reinforced with Soil Cement Piles by Centrifugal Model Tests (원심모형실험에 의한 시멘트 개량말뚝으로 보강된 연약점토지반의 거동에 관한 연구)

  • Lee, Cheo-Keun;Shin, Bang-Woong;Heo, Yol;Ahn, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1994
  • One of problems being faced during construction of soil structures along the coastal regions is the stabilization of soft clay foundation, In this study, centrifugal model bests were conducted to investigate behavior effect of soft foundation reinforced by cement -soil piles for the stabilization of softs clay foundation during the embankment construction. This paper presents results of settlement and heaving behavior of reinforced and unreinforced foundation with time under the swaged loading for different best conditions. The test results have shown that the reductions of vertical settlement of the foundation and heaving of the ground surface adjacent to the embankment are greatly influenced by strength of improved pile, and moisture content, and especially the ratio of replacement area.

  • PDF

Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

  • Jang, Ki-Nam;Cha, Hyun-Jin;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1740-1747
    • /
    • 2017
  • To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of $250^{\circ}C$, $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$, and then cooled to room temperature at cooling rates of $0.3^{\circ}C/min$ under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < $250^{\circ}C$, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

Iodine Stress Corrosion Cracking of Zircaloy-4 Tubes

  • Moon, Kyung-Jin;Lee, Byung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 1978
  • In this paper, it is attempted to investigate the phenomena of iodine stress corrosion cracking of Zircaloy-4 cladding failures in reactor through the results of similar out-of-pile test in iodine vapour. The main result of this experiment is a finding of the relation between the threshold stress which can lead to iodine stress corrosion cracking of Zircaloy-4 tube and the iodine concentration. The values of critical stress and the critical iodine concentration are also obtained. A model which relates failure time of Zircaley-4 tube to failure stress and iodine concentration is suggested as follows: log t$_{F}$ =5.5-(3/2)log$_{c}$-4log $\sigma$ where t$_{F}$ : failure time, minutes c: iodne concentration, mg/㎤ $\sigma$: stress, 10$^4$psi.

  • PDF

A Comparison Study on Compression Index of Marine Clay with High-Plasticity (고소성 해성점토지반의 압축지수에 대한 비교 연구)

  • Jung, Gil-Soo;Park, Byung-Soo;Hong, Young-Kil;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.57-65
    • /
    • 2005
  • In this paper, for the highly plastic marine soft clay distributed in west and southern coast of Korean peninsula of Kwangyang and Busan New Port areas, correlation between compression index and other indices representing geotechnical engineering properties such as liquid limit, void ratio and natural water content were analyzed. Appropriate empirical equations of being able to estimate the compressibility of clays in the specific areas were proposed and compared with other existing empirical ones. For analyses of the data and test results, data for marine clays were used from areas of the South Container Port of the Busan New Port, East Breakwater, Passenger Quay, Jungma Reclamation and Reclamation Containment in the 3rd stage in Kwangyang. In order to find the best regression model by using the commercially available software, MS EXCEL 2000, results obtained from the simple linear regression analysis, using the values of liquid limit, initial void ratio and natural water content as independent variables, were compared with the existing empirical equations. Multiple linear regression was also performed to find the best fit regression curves for compression index and other soil properties by combining those independent variables. On the other hands, another software of SPSS for non-linear regression was used to analyze the correlations between compression index and other soil properties.

  • PDF

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

Applicability of CPT-based Toe Bearing Capacity of Driven PHC Piles (PHC 항타말뚝에 대한 CPT 선단지지력 공식의 적용성 분석)

  • Le, Chi-Hung;Kim, Sung-Ryul;Chung, Sung-Gyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.792-798
    • /
    • 2008
  • CPT 시험은 지난 30여년 동안 지반조사 분야에서 널리 이용되어 왔다. CPT 콘의 근입은 항타말뚝의 근입방법과 유사하기 때문에, CPT 콘의 선단저항력을 이용하여 말뚝의 지지력을 산정하려는 연구가 많이 수행되어 왔다. 본 연구의 목적은 기존에 제안된 CPT 선단지지력 공식의 적용성을 분석하는 것이다. 이를 위해 낙동강 하구 대심도 연약지반에서 수행된 항타 PHC 말뚝에 대한 총 172개의 PDA 시험자료와 80개소의 CPT 자료를 수집하였다. PDA시험의 CAPWAP분석에서 얻어진 선단지지력과 각 CPT 지지력 공식에서 산정된 선단지지력을 비교함으로써 각 공식의 적용성을 분석하였다. 분석에 이용된 CPT 지지력 공식은 Aoki 방법, Meyerhof 방법, Penpile 방법, Philpponnat 방법, LCPC 방법, Schmertmann 방법, Zhou 방법, ICP 방법, Eslami & Fellenius 방법, 그리고 UWA-05 방법의 총 10가지이다. 분석결과, Aoki 방법, Phillipponnat 방법, ICP 방법 그리고 LCPC 방법 순으로 그 적용성이 높은 것으로 나타났다.

  • PDF

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Suggestion of the Prediction Method about Upheaval Shape and Volume for SCP Construction (SCP 시공에 따른 융기토 형상과 체적의 예측기법 제안)

  • Jeong, Gyeong-Hwan;Park, Chan-Woo;Shin, Min-Sik;Hideo-Tsuboi;Mitsuo-Nozu;Lee, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.497-508
    • /
    • 2006
  • Busan-Geoje Fixed Link, total length of 8.2km, consist of bridge and immersed tunnel connects Gaduk island, Busan and Jangmokmyon, Geoje, in extension of the $58^{th}$ local road. The immersed tunnel, a total length of 3.7km within Busan-Geoje Fixed Link, was planed first timein domestic but the deep water depth like maximum of 50m with offshore conditions and the 35m thickness of soft clay layer under the immersed tunnel, migth be some problems like the differential settlement during or after works. So it was designed to install SCP(Sand Compaction Pile) column partially to improve the soft ground under the immersed tunnel. In this paper, it is presented to illustrate the design including ground condition under the immersed tunnel, improvement design, upheaval shape and ratio due to SCP test construction.

  • PDF

A Study on the Characteristic of Floating Base Plate due to Plate Shape (팽이기초의 형상에 따른 특성 분석)

  • Lee, Song;Jeong, Dae-Yeol;Jung, Hyo-Kwon;Lee, Moo-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2008
  • A soft ground improvement method is used for structures which are constructed on soft ground to decrease settlement and Increase bearing capacity. The Floating Base Plate has been developed for such purposes. In this study, the load-settlement characteristics were investigated by numerical analysis on various Floating Base Plate shapes to select an optimum shape, different from the conventional shape. The selected optimum shape was used to perform plate bearing test and numerical simulations. It was found that the Floating Base Plate is very effective In reducing the settlement and increasing the bearing capacity.