Objectives: According to the central limit theorem, the samples in population might be considered to follow normal distribution if a large number of samples are available. Once we assume that toxicity dataset follow normal distribution, we can treat and process data statistically to calculate genus or species mean value with standard deviation. However, little is known and only limited studies are conducted to investigate whether toxicity dataset follows normal distribution or not. Therefore, the purpose of study is to evaluate the generally accepted normality hypothesis of aquatic toxicity dataset Methods: We selected the 8 chemicals, which consist of 4 organic and 4 inorganic chemical compounds considering data availability for the development of species sensitivity distribution. Toxicity data were collected at the US EPA ECOTOX Knowledgebase by simple search with target chemicals. Toxicity data were re-arranged to a proper format based on the endpoint and test duration, where we conducted normality test according to the Shapiro-Wilk test. Also we investigated the degree of normality by simple log transformation of toxicity data Results: Despite of the central limit theorem, only one large dataset (n>25) follow normal distribution out of 25 large dataset. By log transforming, more 7 large dataset show normality. As a result of normality test on small dataset (n<25), log transformation of toxicity value generally increases normality. Both organic and inorganic chemicals show normality growth for 26 species and 30 species, respectively. Those 56 species shows normality growth by log transformation in the taxonomic groups such as amphibian (1), crustacean (21), fish (22), insect (5), rotifer (2), and worm (5). In contrast, mollusca shows normality decrease at 1 species out of 23 that originally show normality. Conclusions: The normality of large toxicity dataset was not always satisfactory to the central limit theorem. Normality of those data could be improved through log transformation. Therefore, care should be taken when using toxicity data to induce, for example, mean value for risk assessment.
Journal of the Korean Data and Information Science Society
/
제17권1호
/
pp.221-231
/
2006
A chi-squared test of multivariate normality is suggested which is oriented for detecting deviations from elliptical symmetry. We derive the limiting distribution of the test statistic via a central limit theorem on empirical processes. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under a non-normal distribution.
This research presents an implementation strategy of Process Capability Index (PCI) according to the types of process characteristics. The types of process feature are classified as four perspectives of variation range, time period, error position, and process stage. The paper examines short-term or long-term PCI, within or between variation, position of precision or accuracy, and inclusion of measurement or calibration stage. Moreover, the study proposes normality test of unilateral PCI.
Moore and Stubblebine(1981) suggested a chi-square test for multivariate normality based on cell counts calculated from the sample Mahalanobis distances. They derived the limiting distribution of the test statistic only when equiprobable cells are employed. Using conditional limit theorems, we derive the limiting distribution of the statistic as well as the asymptotic normality of the cell counts. These distributions are valid even when equiprobable cells are not employed. We finally apply this method to a real data set.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1399-1412
/
2016
We compare many normality tests consisting of different sources of information extracted from the given data: Anderson-Darling test, Kolmogorov-Smirnov test, Cramervon Mises test, Shapiro-Wilk test, Shaprio-Francia test, Lilliefors, Jarque-Bera test, D'Agostino' D, Doornik-Hansen test, Energy test and Martinzez-Iglewicz test. For the purpose of comparison, those tests are applied to the various types of data generated from skewed distribution, unsymmetric distribution, and distribution with different length of support. We then summarize comparison results in terms of two things: type I error control and power. The selection of the best test depends on the shape of the distribution of the data, implying that there is no test which is the most powerful for all distributions.
Journal of the Korean Data and Information Science Society
/
제18권3호
/
pp.809-815
/
2007
Since Bollerslev(1986), the GARCH model has been popular in analysing the volatility of the financial time series. In real data analysis, practitioners conventionally put the normal assumption on the innovation random variables of the GARCH model, which is often violated. In this paper, we analyse the domestic financial data based on the GARCH(1,1) model and among existing normality tests, perform the Jarque-Bera test based on the residuals. It is shown that the innovation based on the GARCH(1,1) model dose not follow the normality assumption.
Arizono와 Ohta(1989)에 의해 소개된 정규성 검정은 쿨백-라이블러 판별정보를 이용하고 있으며, 검정통계량의 유도에 기반이 되는 판별정보의 추정량을 얻기 위해 Vasicek(1976)의 표본엔트로피와 분산의 최대가능도 추정량을 사용했다. 그런데 두 추정량은 편향성을 가지게 되므로 보다 정확한 판별정보의 추정을 위해 비편향 추정량을 사용하는 것이 바람직하다. 본 논문에서는 편향을 수정한 엔트로피 추정량과 분산의 균일최소분산비편향 추정량을 사용하여 판별정보의 추정량을 구하고 이로부터 유도되는 검정통계량을 사용하는 개선된 정규성 검정을 제시한다. 제안한 검정의 특성을 규명하고 검정력 비교를 위해서 모의실험을 수행한다.
Communications for Statistical Applications and Methods
/
제14권3호
/
pp.609-621
/
2007
Diagnostic test results, which are approximately normal with a few number of outliers, but non-normal probability distribution, are frequently observed in practice. In the evaluation of two diagnostic tests, Greenhouse and Mantel (1950) proposed a parametric test under the assumption of normality but this test is inappropriate for the above non-normal case. In this paper, we propose a computationally simple nonparametric test that is based on quantile estimators of mean and standard deviation, instead of the moment-based mean and standard deviation as in some parametric tests. Parametric and nonparametric tests are compared with simulations under the assumption of, respectively, normality and non-normality, and under various combinations of the probability distributions for the normal and diseased groups.
Communications for Statistical Applications and Methods
/
제28권5호
/
pp.463-475
/
2021
Desgagné and de Micheaux (2018) proposed an alternative univariate normality test to the Jarque-Bera test. The proposed statistic is based on the sample second power skewness and kurtosis while the Jarque-Bera statistic uses sample Pearson's skewness and kurtosis that are the third and fourth standardized sample moments, respectively. In this paper, we generalize their statistic to a multivariate version based on orthogonalization or an empirical standardization of data. The proposed multivariate statistic follows chi-squared distribution approximately. A simulation study shows that the proposed statistic has good control of type I error even for a very small sample size when critical values from the approximate distribution are used. It has comparable power to the multivariate version of the Jarque-Bera test with exactly the same idea of the orthogonalization. It also shows much better power for some mixed normal alternatives.
Communications for Statistical Applications and Methods
/
제6권3호
/
pp.901-908
/
1999
Using the Transformed Lorenz curve which is introduced by Cho et al.(1999) we propose the test statistic for testing of normality that is very important test in statistical analysis and compare the proposed test statistic with the Shapiro and Wilk's W test statistic in terms of the power of test through by Monte Carlo method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.