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Abstract

A chi-squared test of multivariate normality is suggested which is  
oriented for detecting deviations from elliptical symmetry. We derive the 
limiting distribution of the test statistic via a central limit theorem on 
empirical processes. A simulation study is conducted to study the 
accuracy of the limiting distribution in finite samples. Finally, we compare 
the power of our method with those of other popular tests of multivariate 
normality under a non-normal distribution.    
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1. Introduction

Elliptically symmetric distributions are a much broader class of multivariate 

distributions than the multivariate normal distributions, and so they can serve as 

the basis for the development of more robust analyses than the standard 

normal-theory procedures. There is a large literature on these distributions and 

their use in statistics (see Fang and Anderson (1990), and Fang, Kotz, and Ng 

(1990)). In this paper, a chi-squared test is proposed which might be useful for 

testing elliptical symmetry. This test, however, is tentatively proposed as a test of 

multivariate normality before it is further developed into a test of elliptical 

symmetry in near future.

Our method can be briefly summarized as follows. We first transform the 

original observations into scaled residuals that have sample correlations of zero 

and have sample means and sample variances equal to zero and one, respectively. 

We next discretize the scaled residuals based on the signs of each variable of the 

scaled residuals and on the squared distances of the scaled residuals. In other 
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words, we divide the space of the scaled residuals by quadrants and the sample 

quantiles of the scaled residuals so that each cell is (at least approximately) 

equiprobable. From these categorical variables, a multiway contingency table is 

formed and a chi-squared test is employed as a test of independence in the 

contingency table. The main idea leading to this chi-squared test of independence 

is that the signs and radius of each scaled residual are approximately mutually 

independent under multivariate normality.

Our paper is organized as follows. In Chapter 2, we explain our method in more 

detail, and then provide main results on the asymptotic distribution of the cell 

counts and on the limiting distribution of the chi-squared test under multivariate 

normality. In Chapter 3, we provide rigorous proofs of main results in Chapter 2. 

In Chapter 4, we provide a simulation study to check the accuracy of the limiting 

distribution of the statistic for finite sample sizes. We then provide a simulation 

study to compare the power of our test with those of other popular tests of 

multivariate normality under a non-normal distribution.

2. Main Results

First, some brief remarks on notation.  We will use I, e  and 0  to denote an 

identity matrix, a column vector of ones, and a column vector or matrix of zeros 

respectively. The dimensions will usually be clear from context, but will be 

specified by subscripts if necessary. Unless otherwise noted vectors will be 

column vectors, but for convenience they will be written in text as row vectors.

Let n×p  data matrix Y=(y ij )  denote an original data matrix whose n  rows 

y 1,y 2,…,y n  are a random sample from a p -variate normal distribution. We 

spherize Y  to obtain a transformed matrix Z  in which the variables are 

uncorrelated and are standardized to have zero mean and unit variance. More 

formally, the n×p  matrix Z=(z ij )  of transformed data is defined by

Z=QeYR(S),                              (2.1)

where Qe= I n-ee
t/n , e  is the n -vector of ones, and R(S)  is a p×p  matrix 

chosen so that Z
t
Z/n= I p . We require the matrix R(S)  to be a function of the 

sample covariance matrix S  defined by S= n
- 1Y tQ eY . By Lemma 3.1 in 

Huffer and Park (2002), we can choose any R  satisfying R
tSR= I  to obtain 

Z tZ/n= I  and the distribution of Z  does not depend on the parameter 

θ= (μ,Σ )  of the multivariate normal distribution. 
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After obtaining the transformed matrix, we discretize the transformed matrix Z  

based on the signs of each variable and on the squared distances of each case z i  

from 0. In other words, we first use the signs of each variable to obtain 2 groups 

labeled ±1. We then use the sample quantiles of the squared distances 

d î
2
= z

t
i z i=(y i- y)

t
S
-1
(y i- y )

to obtain c  groups (labeled 1,2,…,c ) of equal size n/c . (If n  is not divisible 

by c , the group size will not be exactly equal.) We now form a contingency 

table of K≡ c g= c 2 p  cells from the discretized data, where g≡2 p  is the 

number of cells generated by signs of each variable. Let 

π= (π 1,π 2,…,π p+ 1 )= (π
*,π p+ 1 )  denote a particular cell in our table, and 

U nπ
 to denote the cell count in that cell. The first part π

*  correspond to the 

signs of each variable and π p+ 1  corresponds to the c  groups of the squared 

distances, so that every component π i  of π
*  will take ±1  for i=1,2,…,p , 

whereas π p+ 1  will take values 1,2,…,c . 

For two given vectors u= (u 1,…,u p )  and v= (v 1,…,v p ) , we define 

u⋅v= (u 1v 1,…,u pv p )  and we also use vector inequality in such a way that 

u= (u 1,…,u p) > 0  if and only if u i > 0  for all i=1,2,…,p . Let q ni  be the 

( i/c )-th sample quantiles of d 1̂
2
, d 2̂

2
,…, d n̂

2
. We take q n0= 0  and 

q nc=∞ . A more precise definition of the cell counts U nπ
 is 

U nπ= ∑
n

i= 1
I (π

*⋅z i > 0,q n ( π p+ 1-1) < z
t
i z i≤ q nπ p+ 1 ).            (2.2)

We have excluded the cases where π
*
⋅z i=0  but they have zero probability.

Our chi-squared statistic X 2  is defined by

X 2=∑
π

(U nπ-np 0)
2

np 0
                         (2.3)

where p 0=1/K=1/(c g )  is the asymptotic probability of each observation 

belonging to a particular cell. This is just the usual Pearson chi-squared statistic 

for testing equality of probabilities of belonging to cells in a multi-way 

contingency table. Note that, in our situation, the `expected' number of 
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observations in each cell is taken simply to be np 0=n/K .

Before presenting main results, we first introduce some matrices which we need 

in the statements of results. Let Un=(U nπ )  be a K×1  vector of cell counts. 

For easy presentation of results, we assume that the elements of Un  are 

arranged in a standard way; i.e. the first coordinate changes -1 to 1 the fastest, 

the second coordinate changes the second fastest, and so on.

Let q 0i  be the ( i/c) -th quantiles of χ
2
(p)  distribution for i=0,1,…,c . 

Note that q 00= 0, q 0c=∞ . For i= 0,1,…,c , define

a i =
1

2 p- 1
⌠
⌡S 1i
z 1φ(z)dz, b i=

1

2 p
⌠
⌡S 1i
z
2
1φ(z)dz-

p 0
2
,

 c i =
1

2 p- 2
⌠
⌡S 2i
z 1z 2φ(z)dz,

        (2.4)

where φ(z)= (2π)
- p/2
exp(- z

t
z/2) , S 1i= {z∈R

p: z 1 > 0, q 0( i- 1) < z
tz≤q 0i } , 

and S 2i= {z∈R
p
: z 1 > 0,z 2 > 0, q 0( i- 1) < z

t
z≤q 0i } . 

Let D 1  be the design matrix of the main effects and D 2  be the design matrix 

of the first-order interaction effects in g= 2
p  factorial design. More precisely, 

D 1  is a g× p  matrix whose i -th column is 2
p- i  repetitions of the vector 

(- e 2 i- 1 ,e 2 i- 1 ) , and D 2  is the g× p(p-1)/2  matrix obtained from D 1  such 

that the columns of D 2  are all possible products of two distinct columns from 

D 1 . We then define 

A=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳

a 1D 1
a 2D 1
⋯
a c D 1

, B=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳

b 1 e ge
t
p

b 2 e ge
t
p

⋯
b c e ge

t
p

, C=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳

c 1D 2
c 2D 2
⋯
c c D 2

.

We now present the asymptotic distributions of the vector of cell counts U nπ
 

and of the chi-squared test statistics. 

Theorem 1. If y 1,y 2,…,y n  are a random sample from N(μ,Σ )  where Σ  is 

nonsingular, then 

(Un- np 0e)/ np 0→ N( 0,Ψ ) as n→ ∞
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where Ψ= I-E-AA
t
/p 0-CC

t
/p 0, E= diag (e ge

t
g/g,…,e ge

t
g/g )  with 

p 0= 1/K=1/(c g )  and g= 2
p .

Theorem 2. Under the assumptions of Theorem 1,

X
2
→ W 1+ (1-a

*
)W 2+(1-c

*
)W 3 as n→ ∞

where W 1,W 2 , and W 3  are independent chi-squared variates with degrees of 

freedom K- c- p- p(p-1)/2 , p , and p(p-1)/2  respectively, and 

a *= g ∑
c

i= 1
a 2i/p 0,c

*= g ∑
c

i= 1
c 2i/p 0

with a i 's and c i 's defined in (2.4) and g= 2
p . 

After some algebra, simple computing formulas of a *,c *  can be given as 

follows: Define

f a(x)=F p- 1(x)/ 2π-(2π)
- p/2
exp(- x/2)V p- 1( x )

f c(x)=F p- 2/(2π)-(2π)
- p/2exp(- x/2)V p-2( x )( 1+ x/p)

for x≥0 , where F p  is the distribution function of χ
2
(p)  distribution and Vp(r)  

is the volume of the hypersphere with radius r ; i.e. Vp(r)=
⌠
⌡z tz<r

dz=2 r pB p  

where

Bp= {
(2π)

( p- 2)/2
π [ ∏

k- 1

j= 0
(p-2j) ]

- 1

, if  p= 2k is even,

(2π)
( p- 1)/2 [ ∏

k- 1

j= 0
(p-2j) ]

- 1

, if  p= 2k+1 is odd.

We take f a(∞)=1/ 2π, f b(∞)=1/(2π ). Then 

a *=4c ∑
c

i=1
{ f a(q 0i )- f a(q 0( i- 1) )}

2, c *=16c ∑
c

i=1
{ f c(q 0i )- f c(q 0( i- 1) )}

2,

where q 0i  is defined just prior to (2.4).
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3. Proofs

Let θ= (μ,Σ )  denote the parameter of the multivariate normal distribution. 

Because the transformed matrix Z  is ancillary by Lemma 3.1 in Huffer and Park 

(2002), we may assume without loss of generality that Y  is sampled from a 

population with θ 0=(0, I) . We can also note that the distribution of Z  does not 

depend on the choice of rotation R  and we will use Gram-Schmidt method that 

takes R  to be lower triangular with positive elements.

The cell count U nπ
 is the number of observations y i  lying in a region Λ nπ

. 

We introduce some notation to describe this region. Let q= (q 1,q 2,…,q c- 1)  be 

a vector satisfying q 1≤q 2≤…≤q c- 1 . We take q 0= 0  and q c=∞ . For given 

θ= (μ,Σ )  and q , for a given cell π= (π
*
,π p+ 1) , we define regions

A π
*(θ )={y∈Rp: π *⋅z > 0, z=Rt(Σ ) (y-μ)},

B π p+ 1(θ,q)= {y∈R
p: q ( π p+ 1-1) < (y-μ)

tΣ - 1(y-μ)≤q π p+ 1},
and

Λπ(θ,q )=A π
*(θ)∩B π p+ 1(θ,q) ,

where π *= (π 1,π 2,…,π p )  is defined prior to (2.2).

Let q n=(q n1,q n2,…,q n ( c- 1) )  be the vector of sample quantiles of the 

squared distances zti z i  and let q 0= (q 01,q 02,…,q 0( c- 1) )  be the vector of 

population quantiles of χ 2(p)  distribution, where q ni 's and q 0i 's are defined 

prior to (2.2) and (2.4), respectively. We can easily show that q n→ q 0  in 

probability. Let θ n  be the maximum likelihood estimator of θ= (μ,Σ )  based on 

y 1,y 2,…,y n , that is θ n=( y,S ) , so that θ n→ θ 0  in probability. We now 

define the vector of regions Λ n=(Λ nπ )  by Λ nπ=Λπ(θ n,q n )  and the limiting 

vector of regions Λ0=(Λ 0π )  by Λ 0π=Λπ (θ 0,q 0 ) .

For an arbitrary region Γ ⊂Rp , we define Un(Γ)= ∑
n

i=1
I (y i∈Γ )  and define 

P(Γ,θ )  to be the probability assigned to Γ  by the normal distribution with 

parameter θ . We also let D(Γ )  be ∂P(Γ,θ)/∂θ  evaluated at θ= θ 0 . For a 

vector of regions Γ= (Γ i )  we use the obvious vector analogs of the above 

definitions so that Un(Γ ) = (Un (Γ i ) ), P(Γ,θ ) = (P(Γ i,θ ) )  is a vector of 
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probabilities, and D(Γ )  is a matrix of partial derivatives. Our vector of cell 

counts Un  may now be written as Un(Λ n ) .  Finally, we define the process 

Vn(Γ )= n
- 1/2{Un(Γ )-nP(Γ,θ 0)}.

Lemma 1. 

n - 1/2{Un(Λ n )-nP(Λ n,θ n)}=Vn (Λ 0 )-D(Λ 0) n (θ n-θ0 )+ o p( 1).

Proof: It is well known that the space ℑ 1
 of all sets expressible as 

intersections of a finite number of open or closed half-spaces and the space ℑ 2
 

of regions generated by differences of hyperellipsoids are Donsker classes for any 

probability measure on R
p  for any p . Thus the class ℑ  of Λ π(θ,q)  is a 

Donsker class since Λ π(θ,q)  can be expressed as A∩B  where A∈ℑ 1
 and 

B∈ℑ 2
. Now we can apply almost the same arguments as in the proof of 

Lemma 3.2 of Huffer and Park (2002) to derive the above result.               ⃞

Proof of Theorem 1

Suppose the coordinates of θ= (μ,Σ )  are arranged so that θ= (μ,σ,ρ ) , 

where σ= (σ 11,σ 22,…,σ pp)  and ρ= (σ 12,σ 13,…,σ ( p- 1)p )  are the diagonal 

and off-diagonal elements of Σ , respectively.  Then it is easy to show that 

D(Λ 0)=(A,B,C) , where A,B,C  are defined prior to Theorem 1. For any 

vector x= (x 1,x 2,…,x p ) , we define the column vectors s(x)= (x
2
1,x

2
2,…,x

2
p ) , 

and r(x)= (x 1x 2,x 1x 3,…,x p- 1x p )  with dimensions p  and p(p-1)/2 , 

respectively.  Then since S=Y tY/n+o p(n
- 1/2 ) , Lemma 1 leads to

n -1/2 {Un(Λ n)-nP(Λ n,θ n)}=

Vn(Λ 0 )- n (A y+B ∑
n

i=1
(s(y i )-e)/n+C ∑

n

i=1
r(y i)/n)+ o p( 1).

    (3.1)

Using E  defined in Theorem 1, we define a K×K  projection matrix Π= I-E  

which removes the marginal means of the last component π p+ 1 . We now apply 

Π  to both sides of (3.1). It is easy to show that

 ΠUn(Λ n )=Un(Λ n )-np 0e+O(1) , ΠA=A , ΠB=0 , 
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and ΠC=C , where p 0=1/K  defined in (2.3). (Note that the equality 

ΠUn(Λ n )=Un(Λ n )-np 0e  is exact when n  is divisible by c .) Since 

P(Λ π(θ,q), θ )  does not depend on θ , i.e. P(Λ π(θ,q),θ )= P (Λ π(θ 0,q),θ 0) , 

we have 

P(Λ n,θ n)= g
- 1 ( p̂ 1e g, p̂ 2e g,…, p̂ c e g ),

where g=2 p  and p î= Fp ( q̂ ni )-Fp( q̂ n ( i - 1 ) )  for each i  with F p  the 

distribution function of χ
2
(p)  distribution and q̂ n i 's defined prior to (2.2). Thus 

ΠP(Λ n,θ n )= 0 . Putting this all together we have

n
- 1/2
{Un(Λ n )-np 0 e}= ΠVn(Λ 0 )-n

1/2

(A y+C∑i r(y i)/n)+ o p ( 1).

By the finite dimensional central limit theorem, (Vn(Λ 0 ),n
1/2 y,n - 1/2∑

i
r(y i))  

converges in distribution to a normal distribution with zero mean vector and 

covariance matrix given by 

ꀌ

ꀘ

︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳

p 0(I-p 0ee
t ) A C

A t I 0
C t 0 I

.

Since ΠA=A , ΠB=0 , ΠC=C,  and Π e=0 , we can show that 

n
- 1/2
(Un(Λ n )-np 0 e )→ N( 0,p 0Π-AA

t
-CC

t
) as n→ ∞.

This completes the proof.                                                    ⃞

Proof of Theorem 2

We need to calculate the eigenvalues of 

Ψ= I-E-AAt/p 0-CC
t/p 0= I-E-a

*P 1-c
*P 2

where P 1=AA
t
/(g∑

c

i=1
a
2
i ) , P 2=CC

t
/(g∑

c

i=1
c
2
i ) , and a

*,c *,  and g=2 p  are 

defined in this theorem. Since AtA=g∑
c

i= 1
a 2i I , C tC=g∑

c

i= 1
c 2i I  with 
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EA=0,EC=0 ,  and A
tC=0 , it is easy to see that E,P 1,  and P 2  are 

mutually orthogonal, symmetric, and idempotent matrices of ranks c,p,  and 

p(p-1)/2 , respectively. These implies that non-zero eigenvalues of Ψ  are 1 

with multiplicity c(g-1) , 1- a
*  with multiplicity p , and 1- c

*  with 

multiplicity p(p-1)/2 . This implies the desired result.                        ⃞

4. Simulation Study

We first provide a simulation study illustrating the accuracy of the limiting 

distribution of X 2  for finite sample sizes. Although we have tried many 

configurations, almost all of them show identical results unless the number K  of 

cells is small. Therefore we present a simulation results corresponding to the case 

where p= 3 , c= 5 , so that the limiting distribution of the chi-square statistic is

χ2(29)+0.2613χ2(3)+0.3730χ2(3).

We consider four different sample sizes, n= 40,80,200 and  400 , which have 

an average of 1, 2, 5 and 10 observations per cell, respectively.

For each sample size n , we generate 1000 samples of size n  from N 3(0, I )  

and then calculate the chi-squared statistics for each of them. These 1000 values 

are plotted against the expected order statistics of a sample of size 1000 from the 

limiting distribution. The expected order statistics are generated from the limiting 

distribution as follows: We generate a random sample of size one million from the 

weighted chi-squared distribution and the expected order statistics are computed 

by taking every 1000-th order statistic of the sample starting from the 500-th 

order statistic. The resulting quantile-quantile plots are displayed in Figure 1.

Each plot displays the reference line with slope 1 and intercept 0, which 

corresponds to the ideal case where empirical and theoretical distributions coincide. 

Examining the plots, we find that the limiting distribution is a good approximation 

for the cases where average cell counts n p 0  are 2, 5 and 10. However the 

discreteness of the chi-squared values are apparent in the case where n p 0  is 1 

but the points do not deviate much from the reference line even in this case. We 

now present a simulation study comparing the power of X 2  with other popular 

tests of multivariate normality. In our comparisons, four popular tests of 

multivariate normality such as the well-known skewness and kurtosis tests of 

Mardia (1970), the test by Ozturk and Romeu (1992), and the test statistic by 

Baringhaus and Henze (1988) are included. These tests will be denoted by Skew, 
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<Figure 1> quantile-quantile plots for four different sample sizes 

Kurt, OR, and BH respectively in this simulation study. These tests are chosen 

since they performed well in previous studies such as Romeu and Ozturk (1993) 

and Manzotti and Quiroz (2001).

A non-normal distribution considered in this simulation is a spiral distribution 

with density

f(x 1,x 2 |b)=
1
2π
{1+cos [2(θ- br)] } exp (- r

2
/2)

where r  and θ  are radius and angle of (x 1 ,x 2 )  in polar coordinates. A plot of 

density shows two symmetric spiral arms, and as b  increases, the moments of 

this distribution converge rapidly to those of the bivariate normal distribution 

N 2(0,I ).  In our simulation we take b= 2  and, in computing X
2 , we use 

c= 5.  Empirical powers, out of 1000 replicates, of our test and four other tests 

of multivariate normality for α= .01,.05  and .1  are given in Table 1.
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<Table 1> Empirical powers, out of 1000 replicates, of five tests

n= 100 n= 200

α .01 .05 .1 .01 .05 .1

X 2 .391 .634 .738 .866 .948 .984

Skew .013 .068 .115 .014 .074 .120

Kurt .007 .027 .075 .011 .037 .077

OR .048 .115 .172 .033 .136 .223

BH .016 .101 .198 .053 .179 .274

From the results in Table 1, we can see that our method has great power to 

detect this spiral pattern whereas OR and BH are the only other tests that have 

some power. The poor performance of Skew and Kurt is understandable since the 

moments of the spiral distribution are close to those of the normal distribution.
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