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A Note on the Chi-Square Test for Multivariate
Normality Based on the Sample Mahalanobis
Distances

Cheolyong Park!

ABSTRACT

Moore and Stubblebine(1981) suggested a chi-square test for multivariate
normality based on cell counts calculated from the sample Mahalanobis dis-
tances. They derived the limiting distribution of the test statistic only when
equiprobable cells are employed. Using conditional limit theorems, we derive
the limiting distribution of the statistic as well as the asymptotic normality
of the cell counts. These distributions are valid even when equiprobable cells
are not employed. We finally apply this method to a real data set.

Keywords: Ancillary statistics; Basu’s theorem; Conditional limit theorems; Radon-
Nikodym theorem; Wishart distribution

1. INTRODUCTION

Moore and Stubblebine(1981) suggested a chi-square test for multivariate nor-
mality based on the sample Mahalanobis distances

di= /(X - XS 1 (X - X), i=1,2,...,m,

where X and S, are the sample mean vector and sample covariance matrix of a p-
variate random sample X, ..., X,, and “” is a notation used for transpose. Their
chi-square test is based on the frequencies of the squared Mahalanobis distances d?
falling into fixed disjoint intervals in real line. Their argument for the asymptotic
multivariate normality of the cell counts was not rigorous but could be justified
by the central limit theorem for empirical processes due to Dudley(1978). They
derived an exact form of the limiting distribution of the chi-square test statistic
only when equiprobable intervals are chosen; i.e. the intervals are chosen such that
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the probability of each squared Mahalanobis distance belonging to any interval
is equal.

The equiprobable way of forming intervals is commonly employed in practice
since it is perfectly definite and unique given that the number of intervals is
fixed. However, it may well result in a loss of sensitivity at the extremes of the
range of the squared Mahalanobis distances cif and thus it will not necessarily
increase the power of the chi-square test statistic (see pP.456-458 in Kendall and
Stuart(1979) for details). This means that we do not need to confine ourselves to
the equiprobable intervals which are not necessarily optimal in terms of the power
of the test. Therefore, from both theoretical and practical points of view, it will be
of great importance to derive the limiting distribution of the test statistic which
can be applied to unequally probable intervals as well as to the equiprobable
intervals.

In this paper, we will use conditional limit theorems to derive the limiting
distribution of the chi-square test statistic as well as the asymptotic multivariate
normality of the cell counts. We can provide an exact form of the limiting dis-
tribution of the chi-square test statistic even when the intervals are not chosen
equiprobable. We also provide an exact form of the asymptotic joint distribution
of the cell counts. We can find that two exact forms of the limiting and the
asymptotic joint distributions do not depend on the parameters since the cell
counts are based on ancillary statistics d?.

In Section 2, we introduce Moore and Stubblebine’s method in detail and
then present main results on the asymptotic joint distribution of the cell counts
and on the limiting distribution of the chi-square test statistic. In Section 3, we
provide some necessary lemmas and then prove the main results. In Section 4,
we provide an example of application to a real data set in which the test with
unequally probable cells performs better than the one with the equiprobable cells.

2. THE METHOD AND MAIN RESULTS

Before presenting main results we will define some notations. Most of nota-
tions will be the same as those in Moore and Stubblebine(1981). Unless otherwise
noted, vectors will be column vectors, but for convenience they will be written in
text as row vectors.

Let X1, Xo,..., X, be a random sample from N,(,X) for some p and non-
singular . Let § = (u, L) be the parameter of the distribution and 6y = (0, 1)
be a particular parameter with g = 0,% = I. The maximum likelihood estimator
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(MLE) of 6 is denoted by 6, = (X, S,), where we use n for the denominator of
the sample covariance matrix S,.
For a given 0, and 0 = ¢y < ¢1 < --- < ¢pr = 0o, define cells

E;(0) = {:c ERP:ici 1 <(z—p)'S Yo —p) < ci} (2.1)

and E; = E;(6p) = {z € R? : ¢;_1 < z'z < ¢;}. Let N;(6) denote the number of
X1,..., X, falling in E;(0) and let N(8) = (N1(9),..., Np(8)) denote the M-

vector of the cell counts. For M data-dependent cells Ey;, = F;(0,),i=1,...,M

?

we define N;, = N;(0,) to denote the cell count belonging to E;;, and N, = N(d,,)
to denote the M-vector of the cell counts. Let

pi(0,01) = Pa(X:1 € E;(61)) (2.2)

be the cell probability for E;(f;) under 8, then p;(§) = p;(8,6y) is the cell prob-
ability for Ei, under 6. Let p;, = p;(f,) be the estimated cell probability corre-
sponding to the cell count N;, and p, = (pyn,---,Pun) be the M-vector of the
estimated cell probability. It is easy to verify that p, does not depend on 7 since
Pin = Fp(ci) — Fp(ci—1) where F, is the cumulative distribution function of the
x%(p) distribution.

For a given vector y = (y1,¥2,-..,Ym), we define the diagonal matrix D(y)
and the vector of square root values ,/y to be

D('y) = dia‘g(ylvy%"'aym)v \/gz (\/y_, ’\/y—v 7\/y_771)

Then Pearson chi-square test statistic for multivariate normality is
Xz(én) = (Np = npp)! {D(npn)}—l (Np = npn). (2.3)

To derive the limiting distribution of X?(6,), we first need to derive the asymp-
totic joint distribution of N,. For data-dependent, non-rectangular cells like E;,,
we can employ the central limit theorem for empirical processes due to Dud-
ley(1978) to show the asymptotic multivariate normality of N,. Pollard(1978)
derived the limiting distribution of various chi-square test statistics based on the
Central Limit Theorem. Moore and Stubblebine(1981) derived the limiting distri-
bution of X?(f,) based on Pollard’s result without verifying regularity conditions
in details.

We will derive the asymptotic multivariate normality of N,, based on a con-
ditional limit theorem due to Holst(1981). By utilizing the fact that the squared
Mahalanobis distances d? are ancillary (see Lemma 3.1 in the next Section for



482 Cheolyong Park

proof), we can provide exact forms of both the asymptotic joint distribution of
N,, and the limiting distribution of X2(d,,).

Here are main results on the asymptotic joint distribution of N,, and the
limiting distribution of X2(d,).

Theorem 2.1.
-1/2 d *
n~ % (Np — npp) ~— Ny(0,4%) as n— oo

where A* = D(p,) — pnpt, — 2B*B*t, B* = (dilp,...,dm1p)t, 1, is the p-vector
of ones, and

d; = (cfﬁe‘ci_lﬂ - cf/ze_ci/2) by/2

b :{[p(p—Z)---Q]‘1 p even
Pl @/mYPpp-2)---17 p odd.

Corollary 2.1.
X2(6,) -5 Wy + AWy as n — oo

where W1 and Wy are independent chi-square variates with degrees of freedom
M —2 and 1, respectively and A =1 — 2pd* with d* = Y M (d? /pin).

Note that exact forms are given for the asymptotic joint distribution of N,, and
for the limiting distribution of X2(6,). Moore and Stubblebine(1981) provided a
form of the asymptotic joint distribution of N, but it is not as precise as Theorem
2.1 since it depends on the limiting value of 6,. Also they provided the exact form
of the limiting distribution of X 2(@n) only when equiprobable cells are employed;
ie. pip =1/M for all 4.

3. PROOFS

In this section, we will prove Theorem 2.1 and then Corollary 2.1. As noted in
Section 1, a conditional limit theorem in exponential families due to Holst(1981)
1s an essential tool to derive Theorem 2.1. Corollary 2.1 is proved easily from
Theorem 2.1.

Proof of Theorem 2.1

To prove Theorem 2.1, we will use the multivariate conditional limit theorem
by Park(1995), an extension of a univariate conditional limit theorem due to
Holst(1981). While deriving the result, we will utilize the following lemma.
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Lemma 3.1. The squared Mahalanobis distances d? are ancillary and indepen-
dent of 0, = (X, S;).

Proof: Define U; = £7Y/2(X;~p) for each 7, then Uy, ..., U, is a random sample
from Np(0, I) and thus the distribution of U;’s are free of §. Let U and S, denote
the sample mean vector and sample covariance matrix of Uy,...,U,. Then the
distribution of statistics

(Xi = X)'S71 (X, - X) = (U - U)'S; (U - 0)

is free of @ and so d2’s are ancillary. Since 6, is a sufficient and complete statistic
for 6, d’s are independent of 6, by Basu’s theorem. This completes the proof.
O

By the above lemma, the vector N, of cell counts are ancillary and thus we
have

Lo(Nn) = Lg(Nn) = Loy (Np|X =0,8, = 1)
= Ly (N(6p)|X =0,5,=1) (3.1)

for a fixed parameter 6y = (0,I), where the last equality holds since N,

N(8,) is equal to N(6), given that X = 0,8, = I. To apply the conditional
theorem by Park(1995), the conditions given in (3.1) need to be given in terms
of the canonical sufficient statistics for the Np(u, T) distribution. Thus we define
some notations: For any p-vector = (z1,...,%,), we define column vectors
s(z) = (z,d(z),r(z)) and u(z) = (I(z € E1),...,I(z € Ej)) where d(z) =
(%,...,22), r(z) = (2122, .., Tp_1%p) and E;’s are defined just after (2.1). With
these notations, we can see that the canonical sufficient statistics is Y -, s(X;)

and N(6p) = Sy u(X;). Since {X = 0,5, = I} is equivalent to {3 ; s(X;)/n =
(Op, 1p,0p(p—1)/2)}, the equation (3.1) is equal to

,C (Z | Z /’I’L = 0 ,lp,Op(p_l)/2)> .

=1

Now we are ready to apply Corollary 1 of Park(1995) and derive the asymp-
totic distribution of N,. Assumption Al is cleary satisfied since the multivari-
ate normal distributions belong to a regular exponential family (See p. 116 of
Barndorfi-Neilson (1978) for details). Assumption A2 is satisfied by fixing

Sp = (Opa 1pa0p(p_1)/2) and 8, = @,.



484 Cheolyong Park

Assumption A3 is satisfied since u*s(X1) is not equal to some constant with
probability 1 for any 6 unless u = 0. Assumptions A4’ and A6 are trivially
satisfied since u(X7) is a vector of M indicator variables and since 8, = 6. We
will now verify Assumption A5’ to hold in the following lemma.

Lemma 3.2. There exists ng such that
. . no
/ )Eg exp {zftu(Xl) + znt.s(Xl)}} dn < oo,
Ra

for all ¢ € RM and for all @ = (u, X)) with arbitrary mean vector  and positive
definite covariance matriz X, where g = 2p + p(p — 1)/2.

Proof: First we will show that, for n > p + 1, 3 ,(X;, X; X}) has a bounded
density. Note that 3°;(X;, X;X}) is just an alternative way of writing 3, s(X;).
Since >; X; ~ N(nu,n¥) and nS; has the Wishart distribution with parame-
ters n — 1,p, X, and since ), X; and nS; are independent, the joint density of
(3°; Xi,n8;) is the product of the densities of }°, X; and nS;. Since both 3, X;
and nS; have bounded densities when n > p+1 (see p. 162 in Johnson and Kotz
(1972) for details), the joint density of (¥; X;,nS;) is bounded. Thus the joint
density of 3;(X;, X[ X;) is also bounded since the Jacobian of the transformation
from (3°; X;,nSz) to 3, (X;, XiX}) is 1.

Fix #. Let P be the probability measure of s(X) under 6 and P, be the
restriction of P to the set Ar = {s(y) : y € Ex}, i.e. Px(B) = P(BN A). Define
pr = Pe(R7) = Pp{X1 € By} for each k. Then P =M, P, and 3, p; = 1 with
pr > 0 for each k, so that Qp = p;lpk is a probability measure. Thus,

— w1
P = Pot- ¥ Popy= > pelQr x-#pp) Qs (3.2)
kiskm k1yokm

where P*™ is the m-fold convolution of P. Take m = p+1. Since Q;™ <« P*™, by
the Radon-Nikodym Theorem, there exists a non-negative density fi such that

() = [ feapm

for all A € R?. Since 3 ;(X;, X;X}) has a bounded density, the Radon-Nikodym
derivative g of P*™ with respective to the Lebesgue measure v on RY is bounded
and

Q™ (4) = /A feg dv.
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Since [, (1—p, ™ fx)dP*™ = P*™(A)—p, " Q;™(A) > O for all A € R9 by (3.2), we
have fr < p}* and so fig is also bounded. Now, by theorem 19.1 of Bhattacharya.
and Rao (1976), the existence of the bounded density frg is equivalent to that the
characteristic function corresponding to the probability measure Q) is in L™ (RY)
space for some ng. In other words, there exists ng such that

/ IEg exp{?ﬁntYk}|n0 dn < o0 (3.3)
Ra

for all k, where Y is a random vector with the probability measure Q.
Using this integrability result it is straightforward to complete the proof of
the lemma. First we observe that

‘Eg exp{iftu(Xl) + iUtS(Xl)}|

M
Z exp{ifr} Fy [exp{ints(Xl)} I(X; € Ek)]
k=1

%’: ’Eo [exp{ints(Xl)}I(Xl € Ek)] |
k=1

V4N

Now note that

It

By [explin's(X)} (X € B)] = [ explin'y}dPu(y)
= Dk /R L exp{in'y}dQi(y) = Py exp{in'Yi}.

Thus,

7i0

‘Eg exp{i€tu(X1) +in's(X1)}

iA

M ne
{Z | B [explin's(X1)} I(X: € Ek)”}
k=1

g
Y

M no M
{Zpk 1Eo eXP{thk}‘} < px lEe exp{in'Y}
k=1 k=1

which is integrable by (3.3). This completes the proof. a
By Corollary 1 of Park(1995), we have

nY2(N, — npn) % Nar(0,A — BC™LBY) as n — oo,
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where
A = Covy,(u(X1)), B = Covgy(u(X1),s(X1)), C = Covy,(s(X1)).

Using the results in Appendix of Moore and Stubblebine(1981), we can easily
show that

A= D(pn) — pnpy, B = (B1, By, Bs), C = diag(Ip, 21, Iyp—1y2),
where
Bl = COVQO(U(Xl),Xl) = 0, Bg = COVgO(u(X1),7"(X1)) = 0,

and By = Covg,(u(X1),d(X1)) = 2B* with B* defined in this theorem. Therefore
we have
A* = A— BC™'B' = D(p,) — pnpt, — 2B*B™,

which completes the proof of Theorem 2.1. O

Proof of Corollary 2.1

Since X2(8,) = (Np — npp)t {D(npy)} ! (N, — npn), we need to calculate the
eigenvalues of

F = {D(p,)} 24" {D(p,)} V2 = I — \/pnr/pm' — 2pd* EE",

where E = {D(p,)}~'/?B*//pd* with d* defined in this corollary. Since E'E =
1p15/p, it is easy to show that EE? is an idempotent matrix of rank 1 and so is

Since Y ; d; = 0, two idempotent matrices \/Pn\/Pn’ and EE? are orthogonal.
This show that eigenvalues of F are 1 with multiplicity M — 2, 1 — 2pd* with
multiplicity 1, and 0 with multiplicity 1. This completes the proof. [

4. AN EXAMPLE

In this section, we provide an illustrative example of applying the chi-square
test to a real data set. The real data are the mineral content data which are
presented in table 1.7 of Johnson and Wichern (1992). The table contains 25 cases
of six measurements for the mineral content on the dominant and nondominant
sides of three bones. We investigate the multivariate normality of the first two
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variables of the table; the mineral content of the dominant and nondominant
sides of radius.

We first focus on the case where the number of cells is three, i.e. M = 3. The
test with the equiprobable cells leads to the following results; the vector of cell
counts is N, = (12,8, 5) and the chi-square value is 2.96, so that the asymptotic
p-value of the test is greater than .0853 since 2.96 corresponds to the upper .0853
quantile of x?(1). The test with p1, = 1/5,p2n = psn = 2/5 leads to the vector
of cell counts N, = (2,18,5) and the chi-square value 10.7. Thus this test has
an asymptotic p-value less than .0047 since 10.7 corresponds to the upper .0047
quantile of x2(2). For the case where M = 4, we obtain similar results; the
equiprobable cells lead to the chi-square value 5.24 with p-value greater than
.0728 whereas the cells with p1, = pon = 1/5,p3, = pan = 3/10 lead to the
chi-square value 16.53 with p-value less than .0009.

For M = 5, the chi-square test with equiprobable cells performs quite well
with p-value less than .0018. We do not consider unequally probable cells since
expected counts for some cells are less than 5. Similarly we do not consider the
cases where M > 5 since average cell counts are less than 5.

In this example, the test with unequally probable cells performs better in
detecting deviations from the multivariate normality. When the number of cells
is small, the chi-square test is quite sensitive to the choice of cells and thus we
may have to try unequally probable cells as well as the equiprobable cells.
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