Browse > Article
http://dx.doi.org/10.7465/jkdi.2016.27.5.1399

Comprehensive comparison of normality tests: Empirical study using many different types of data  

Lee, Chanmi (Department of Statistics, Chonnam National University)
Park, Suhwi (Department of Statistics, Chonnam National University)
Jeong, Jaesik (Department of Statistics, Chonnam National University)
Publication Information
Journal of the Korean Data and Information Science Society / v.27, no.5, 2016 , pp. 1399-1412 More about this Journal
Abstract
We compare many normality tests consisting of different sources of information extracted from the given data: Anderson-Darling test, Kolmogorov-Smirnov test, Cramervon Mises test, Shapiro-Wilk test, Shaprio-Francia test, Lilliefors, Jarque-Bera test, D'Agostino' D, Doornik-Hansen test, Energy test and Martinzez-Iglewicz test. For the purpose of comparison, those tests are applied to the various types of data generated from skewed distribution, unsymmetric distribution, and distribution with different length of support. We then summarize comparison results in terms of two things: type I error control and power. The selection of the best test depends on the shape of the distribution of the data, implying that there is no test which is the most powerful for all distributions.
Keywords
Empirical power; empirical type I error; limiting distribution; normality tests;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shapiro, S. S. and Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67, 215-216.   DOI
2 Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for the two independent samples. Bulletin Mathematique de L'Universite de Moscow, 2, 3-14.
3 Smirnov, N. V. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals of Mathematical Statistics, 19, 279-281.   DOI
4 Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730-737.   DOI
5 Stephens, M. A. (1976). Asymptotic results for goodness-of-fit statistics with unknown parameters. Annals of Statistics, 4, 357-369.   DOI
6 Stephens, M. A. (1977). Goodness of fit for the extreme value distribution. Biometrika, 64, 583-588.   DOI
7 Szekely, G. J. and Rizzo, M. L. (2005). A new test for multivariate normality. Journal of Multivariate Aanalysis, 93, 58-80.   DOI
8 von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und Wahrheit, Julius Springer, Vienna, Austria.
9 Wilson, E. B. and Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National Academy of Sciences of the United States of America, 17, 684-688.   DOI
10 Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von Mises criterion. The Annals of Mathematical Statistics, 33, 1148-1159.   DOI
11 Anscombe, F. J. and Glynn, W. J. (1983). Distribution of the kurtosis statistic $b_2$ for normal samples. Biometrika, 70, 227-234.
12 Bajgier, S. M. and Aggarwal, L. K. (1991). Powers of goodness-of-fit tests in detecting balanced mixed normal distributions. Educational and Psychological Measurement Summer, 51, 253-269.   DOI
13 Bowman, K. O. and Shenton, L. R. (1975). Omnibus contours for departures from normality based on ${\sqrt{b_1}}$ and $b_2$. Biometrika, 43, 243-250.
14 Conover, W. J. (1999). Practical nonparametric statistics, 3rd Ed., Wiley, New York.
15 D'Agostino, R. B. and Tietjen, G. L. (1973). Approaches to the null distribution ${\sqrt{b_1}}$. Biometrika, 60, 169-173.
16 Cramer, H. (1928). On the composition of elementary errors. Scandinavian Actuarial Journal, 1, 13-74.
17 D'Agostino, R. B. (1970). Transformation to normality of the null distribution of $g_1$. Biometrika, 57, 679-681.
18 D'Agostino, R. B. and Pearson, E. S. (1973). Tests for departure from normality. Empirical results for the distribution of $b_2$ and ${\sqrt{b_1}}$, Biometrika, 60, 613-622.
19 Doornik, J. A. and Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 927-939.   DOI
20 Jarque, C. M. and Bera, A. K. (1981). Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Economics Letters, 7, 313-318.   DOI
21 Kang, S. B., Han, J. T. and Cho, Y. S. (2014). Goodness of fit test for the logistic distribution based on multiply type II censored samples. Journal of the Korean Data & Information Science Society, 25, 195-209.   DOI
22 Lilliefors, H. (1969). On the Kolmogorov-Smirnov tests for the exponential distribution with mean unknown. Journal of the American Statistical Association, 64, 387-389.   DOI
23 Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzionc. 1st Itali Attuari, 4, 1-11.
24 Lee, H. Y. (2013). Goodness-of-fit tests for a proportional odds model. Journal of the Korean Data & Information Science Society, 24, 1465-1475.   DOI
25 Lilliefors, H. (1967). On the Kolmogorov-Smirnov tests with mean and variance unknown. Journal of the American Statistical Association, 62, 399-402.   DOI
26 Royston, J. P. (1983). A simple method for evaluating the Shapiro-Francia W' test of non-normality. The Statistician, 32, 297-300.   DOI
27 Martinez, J. and Iglewicz, B. (1981). A test for departure from normality based on a biweight estimator. Biometrika, 68, 331-333.   DOI
28 Pearson, E. S. and Hartely, H. O. (1966). Biometrika tables for statisticians, 3rd Ed., Cambridge, New York.
29 Rahman, M. and Govidarajulu, Z. (1997). A modification of the test of Shapiro and Wilk for normality. Journal of Applied Statistics, 24, 219-236.   DOI
30 Royston, J. P. (1992). Approximating the Shapiro-Wilk test for non-normality. Statistics and computing, 2, 117-119.   DOI
31 Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52, 591-611.   DOI