• 제목/요약/키워드: test coil

검색결과 510건 처리시간 0.034초

HR Coil재 Box형 용접구조물의 피로강도평가에 관한 연구 (Fatigue Strength Evaluation of Welded Box Type with HR Coil)

  • 강성원;김명현;장용원;이진우
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.20-24
    • /
    • 2005
  • Due to the difficulties associated with the supply of steel plates, hot rolled coil (Steel grade: SM490A) is considered fur structural materials in replace of the existing SWS50A-M1. However, it is found that SM490A exhibits a significant anisotropy in terms of impact energy with respect to transverse and longitudinal directions. In this study, an experimental investigation is carried out to examine the relationship between the anisotropy in impact values and the fatigue strengths of SM490A with respect to the rolling direction of test specimens. All test specimens failed around 1,500,000 cycles regardless of the test specimen direction. Therefore, it is found that the anisotropy in impact energy is not related to the fatigue strength of the materials considered in this study. However, the transverse direction specimen showed more rapid brittle fracture mode compared to that of longitudinal direction specimen, and this appears to be related to the lower impact values in transverse direction.

건식변압기 코일의 열적 수명평가 (Thermal Lifetime Estimation of Coil Used for Dry-type Transformer)

  • 김민규;허대행;김익수;장진영;문병철;고재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 합동춘계학술대회 논문집 전기물성,응용부문
    • /
    • pp.131-132
    • /
    • 2008
  • This paper describes a method to estimate the thermal lifetime of coil used in the dry-type molded transformer which is widely used in the domestic distribution system. In order to reduce the testing time, temperature accelerated aging test is planned. Finally, the thermal lifetime estimation method is composed of a temperature aging test and a cyclic test of temperature, humidly and lightning impulse voltage withstand test.

  • PDF

다중 코일에 의한 콘크리트내의 철근 탐지 시 신호 특성 (Signal Characteristics of Multi-coil Probe for the Test of Reinforcement Embedded in Concrete)

  • 김영주;이승석;윤동진
    • 비파괴검사학회지
    • /
    • 제20권4호
    • /
    • pp.285-289
    • /
    • 2000
  • 본 연구는 콘크리트내의 철근의 굵기와 깊이를 동시에 측정할 수 있는 기술 개발에 관한 것이다. 개발된 탐촉자는 기존의 철근 탐지기와 다른 구조를 지니는데 감지 코일이 세 개로 구성되어 있다. 따라서 세 가지 신호를 동시에 측정하여 분석함으로써 철근의 굵기와 깊이를 분석하도록 되어 있다. 탐촉자 내 코일의 전압과 위상 변화를 임피던스 분석기를 이용하여 조사하고 그 전달함수의 괘적을 분석하였다. 여기 코일 내부에 장착된 감지 코일은 알려진 바와 같이 단순한 변화 형태를 나타내었으나 여기 코일 밖에 장착된 코일의 경우 변화 곡선이 복잡하였다. 실제 철근탐지 실험은 일반 와전류 탐상기를 이용하였는데 여러 가지 철근의 굵기와 깊이에 대하여 실험하였다. 철근 깊이에 따른 신호 변화는 임피던스 분석기에 의한 전달함수 변화에서 나타낸 것과 비슷한 경향을 나타내었으며 감지 코일마다 다른 전압의 변화를 이용하여 철근의 굵기와 깊이의 동시 측정이 가능하였다.

  • PDF

홀센서를 사용한 펄스와전류탐상 신호의 수치모델링 및 코일센서 신호와의 특성 비교 (Numerical Modeling of the Hall Sensor Signal Used in Pulsed Eddy Current Testing and Comparison of Its Characteristics with a Coil Sensor Signal)

  • 신영길
    • 비파괴검사학회지
    • /
    • 제36권6호
    • /
    • pp.490-495
    • /
    • 2016
  • 펄스와전류탐상에서 탐상 신호는 주로 센서코일에 유도되는 기전력의 시간에 따른 변화를 측정하여 사용되었는데, 최근에는 홀센서(Hall sensor)로 측정한 신호를 사용하는 경우도 많아지고 있다. 본 논문에서는 펄스와전류탐상에서 나타나는 홀센서 신호를 수치적으로 모델링하여 예측하였다. 이를 위해 두께 측정을 위한 탐촉자를 설계하고 먼저 계단입력전류를 사용한 수치해석을 수행하여 홀센서를 사용하였을 경우의 신호를 예측하였다. 또한, 코일을 센서로 사용하였을 경우의 신호도 동시에 계산하였다. 수치모델링 결과로 예측된 홀센서 신호들은 실험 연구를 통해 보고된 신호들과 유사한 형태를 가지고 있음을 확인할 수 있었다. 그리고 피검사체의 두께 변화에 따른 두 신호들의 특성을 분석하고 비교해 본 결과, 홀센서 신호에서는 코일센서 신호에 비해 두께 변화를 판별하기 위한 정보가 더 적게 제공된다는 것을 알 수 있었다. 펄스입력전류를 사용한 경우의 탐상 신호들도 계산해 본 결과, 두 신호 모두 사용된 펄스의 폭이 지난 시간에는 계단입력전류를 사용한 경우의 응답이 반대가 되어 감소하는 형태로 나타난다는 것을 확인할 수 있었다.

Rogowski Coil 기반의 전류 센싱 회로를 적용한 SiC MOSFET 단락 보호 회로 설계 (Short-circuit Protection Circuit Design for SiC MOSFET Using Current Sensing Circuit Based on Rogowski Coil)

  • 이주아;변종은;안상준;손원진;이병국
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.214-221
    • /
    • 2021
  • SiC MOSFETs require a faster and more reliable short-circuit protection circuit than conventional methods due to narrow short-circuit withstand times. Therefore, this research proposes a short-circuit protection circuit using a current-sensing circuit based on Rogowski coil. The method of designing the current-sensing circuit, which is a component of the proposed circuit, is presented first. The integrator and input/output filter that compose the current-sensing circuit are designed to have a wide bandwidth for accurately measuring short-circuit currents with high di/dt. The precision of the designed sensing circuit is verified on a double pulse test (DPT). In addition, the sensing accuracy according to the bandwidth of the filters and the number of turns of the Rogowski coil is analyzed. Next, the entire short-circuit protection circuit with the current-sensing circuit is designed in consideration of the fast short-circuit shutdown time. To verify the performance of this circuit, a short-circuit test is conducted for two cases of short-circuit conditions that can occur in the half-bridge structure. Finally, the short-circuit shutdown time is measured to confirm the suitability of the proposed protection circuit for the SiC MOSFET short-circuit protection.

피복전선의 내부 열화 검출용 센서 개발 (The Development of Diagnostic Sensor for Inner Deterioration of Covered Electric Wire)

  • 김기준
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.244-249
    • /
    • 2014
  • In this research, it have developed a sensor that could diagnose inner deterioration of covered wires. With this sensor it observed results from simulation, and the attribute required for realization. For simulation it have used FLUX, it have considered all of geometric and electromagnetic information from coil and base metal that influences eddy current sensor's property in order to predict the final result. It assumed there is no mutual inductance in the coil with N number of turns, because equivalent current flows in coil that is continuously connected in eddy current sensor. It assumed circular coil loop draws a circle, always have self inductance, and they are connected in series and overlapped according number of turns (N) in coil, and bobbin configuration. Actual sensor was produced with consideration of inductance and number of turns (N). In conclusion, it were able to test the dependency through results from simulation, actual measurement, and modeling of simulation. It is considered that attributes of respective base metal and structure can be predicted by simulating in advance.

Study on Vibration Energy Harvesting with Small Coil for Embedded Avian Multimedia Application

  • Nakada, Kaoru;Nakajima, Isao;Hata, Jun-ichi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • 제5권1호
    • /
    • pp.47-52
    • /
    • 2018
  • We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated with physical simulator is equal to or exceeds the 7 V peak-to-peak at maximum by 560/min of flapping of wings. Even if we account for the junction voltage of the diode (200 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the high-voltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient for subcutaneous area of birds. The efficiency, magnetic 2 mm in length and coil 15mm in length, if axial direction is rectified, the magnetic flux density given to the coil could calculated to 7.1 % and generated power average 0.47mW. The improvements in size and wire insulation are expected in the future.

대형회전기기응용을 위한 GdBCO 레이스트랙형 팬케이크 코일의 ��치 발생과 전파특성에 관한 연구 (A Study on the Quench Initiation and Propagation Characteristics in GdBCO Racetrack Pancake Coil for Large-Scale Rotating Machines)

  • 양동규;송정빈;김광록;권오준;이우승;고태국;이해근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권3호
    • /
    • pp.24-30
    • /
    • 2011
  • The stability issue of high temperature superconducting (HTS) racetrack coils is one of the most important factors for the development of large-scale rotating machines, such as ship propulsion motors and power generators. However, The stability and normal zone propagation characteristics of HTS racetrack pancake (RP) coils are not sufficient yet. In this study, quench tests for a GdBCO racetrack pancake coil were carried out under the condition of $LN_2$ at 77 K. Minimum quench energy and two-dimensional normal zone propagation velocities of the coil are also discussed. Normal zone propagation velocity in the coil's curved section is faster than in its straight section due to stress effects. The test results show that the protection of the straight section is of greater importance than that of the curved section when GdBCO racetrack pancake coils are applied to large-scale rotating machines.

PSCAD/EMTDC를 이용한 SMES Component modeling에 관한 연구 (A study on the SMES component modeling using PSCAD/EMTDC)

  • 김진근;김재호;정희열;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1998-1999
    • /
    • 2007
  • Before applying the HTS(High Temperature Superconductor) power devices to a real utility network, system analysis should be carried out by some simulation tools. PSCAD/EMTDC simulation tool is one of the most popularized useful analysis tools for electrical power system. Unfortunately the model component for HTS coil is not provided in PSCAD/EMTDC simulation tool. In this paper, EMTDC model component for HTS coil has been developed considering real characteristics of HTS coil like critical current, temperature and magnetic field. The developed model component of HTS coil could be used for power system application. Using the developed model component for HTS coil, we can easily do the simulation of HTS power devices application test in utility with the various inductance, quench current, inner magnetic field, and temperature values, for instances; SMES(Superconducting Magnetic Energy Storage) system, superconducting motor, transformer, and FCL(Fault Current Limiter)

  • PDF

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.