• Title/Summary/Keyword: ternary-CMOS (T-CMOS) technology

Search Result 3, Processing Time 0.019 seconds

Implementation of Ternary Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.142-144
    • /
    • 2006
  • In this paper, the Ternary adder and multiplier are implemented by current-mode CMOS. First, we implement the ternary T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second, we implement the circuits to be realized 2-variable ternary addition table and multiplication table over finite fields GF(3) with the ternary T-gates. Finally, these operation circuits are simulated by Spice under $1.5{\mu}m$ CMOS standard technology, $1.5{\mu}m$ unit current, and 3.3V VDD voltage. The simulation results have shown the satisfying current characteristics. The ternary adder and multiplier implemented by current-mode CMOS are simple and regular for wire routing and possess the property of modularity with cell array.

  • PDF

Multi-Valued Logic Device Technology; Overview, Status, and Its Future for Peta-Scale Information Density

  • Kim, Kyung Rok;Jeong, Jae Won;Choi, Young-Eun;Kim, Woo-Seok;Chang, Jiwon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2020
  • Complementary metal-oxide-semiconductor (CMOS) technology is now facing a power scaling limit to increase integration density. Since 1970s, multi-valued logic (MVL) has been considered as promising alternative to resolve power scaling challenge for increasing information density up to peta-scale level by reducing the system complexity. Over the past several decades, however, a power-scalable and mass-producible MVL technology has been absent so that MVL circuit and system implementation have been delayed. Recently, compact MVL device researches incorporating multiple-switching characteristics in a single device such as 2D heterojunction-based negative-differential resistance (NDR)/transconductance (NDT) devices and quantum-dot/superlattices-based constant intermediate current have been actively performed. Meanwhile, wafer-scale, energy-efficient and variation-tolerant ternary-CMOS (T-CMOS) technology has been demonstrated through commercial foundry. In this review paper, an overview for MVL development history including recent studies will be presented. Then, the status and its future research direction of MVL technology will be discussed focusing on the T-CMOS technology for peta-scale information processing in semiconductor chip.

High Speed TCAM Design using SRAM Cell Stability (SRAM 셀 안정성 분석을 이용한 고속 데이터 처리용 TCAM(Ternary Content Addressable Memory) 설계)

  • Ahn, Eun Hye;Choi, Jun Rim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.19-23
    • /
    • 2013
  • This paper deals with the analysis of 6T SRAM cell stability for Hi-speed processing Ternary Content Addressable Memory. The higher the operation frequency, the smaller CMOS technology required in the designed TCAM because the purpose of TCAM is high-speed data processing. Decrease of Supply voltage is one cause of unstable TCAM operation. Thus, We should design TCAM through analysis of SRAM cell stability. In this paper we propose methodology to characterize the Static Noise Margin of 6T SRAM. All simulations of the TCAM have been carried out in 180nm CMOS process technology.