• 제목/요약/키워드: termite activity

검색결과 28건 처리시간 0.024초

Cellulose Hydrolysis by Digestive Enzymes of Reticulitermes speratus, a Native Termite from Korea

  • Lee, Young-Min;Kim, Hyun-Jung;Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.140-148
    • /
    • 2010
  • This study was to investigate the enzymatic hydrolysis of cellulose using the cellulase from whole body of the native termite collected in Milyang-si, Kyungsangnamdo, Korea. In the results, optimal temperature and pH for the enzyme of native termites were $45^{\circ}C$ and pH 5.5 for both endo-${\beta}$-1, 4-glucanase and ${\beta}$-glucosidase. Enzyme activity of the termite enzyme was shown $8.8{\times}10^{-2}\;FPU/m{\ell}$. And the highest glucose hydrolysis rate of cellulose by the digestive enzyme from test termites was 24.5% based on the glucan, comparing 59.7% by commercial enzyme (only celluclast 1.5 L) at 1% (w/v) substrate and 36 hours in hydrolysis time. This hydrolysis rate by the digestive enzyme from test termites was comparatively high value in 41% level of the commercial enzyme. When cellulose was hydrolyzed by the digestive enzyme of the native termite, glucose hydrolysis was almost completed in 12 hours which was the considerably reduced time for cellulose hydrolysis. It was suggested that the quiet short reaction time for cellulose hydrolysis by the enzyme from native termite could be a very high advantage for development of hydrolysis cellulase for lignocellulosic biomass.

Citronella 및 lemongrass oil의 생리활성 및 단회 경구 투여 독성시험 (Biological activities and acute oral toxicity of citronella and lemongrass oil)

  • 박지용;김진윤;장승희;김해중;이승진;박승춘
    • 대한수의학회지
    • /
    • 제55권1호
    • /
    • pp.13-20
    • /
    • 2015
  • This study was performed to investigate the antibacterial, antioxidant, and termite repellent effects of citronella oil (CiO) and lemongrass oil (LO). When the antibacterial activity against Staphylococcus (S.) aureus with various levels of antibacterial resistance were tested, a 0.05% concentration of CiO and LO completely inhibited the growth of all tested S. aureus strains. Evaluation of the antioxidant effect demonstrated that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CiO was 2~3 times greater than that of LO. Among trial products made with various combinations of CiO and LO, a CiO : LO ratio of 6 : 4 had the most potent termite repellent effects. Assessment of acute toxicity of the trial product showed that the $LD_{50}$ was more than 2,000 mg/kg. Based on the above results, CiO and LO have antibacterial, antioxidant, and termite repellent activities. Therefore, both compounds could be potential termites repellent reagents.

Anti-Termite Activity of Azadirachta excelsa Seed Kernel and Its Isolated Compound against Coptotermes curvignathus

  • Morina ADFA;Khafit WIRADIMAFAN;Ricky Febri PRATAMA;Angga SANJAYA;Deni Agus TRIAWAN;Salprima YUDHA S.;Masayuki NINOMIYA;Mohamad RAFI;Mamoru KOKETSU
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권3호
    • /
    • pp.157-172
    • /
    • 2023
  • Azadirachta excelsa, is a plant belonging to the same genus as Indian neem (Azadirachta indica), and its use as a pesticide is reported by few studies. Despite being a different species, it is expected to have the same biopesticide potential as A. indica. Therefore, this study aims to investigate the anti-termite activity of n-hexane and methanol extracts of A. excelsa seed kernel at various concentrations against Coptotermes curvignathus. The methanol extract demonstrated greater termicidal activity than n-hexane at doses test of 2%, 4%, and 8%. It also showed 100% termite mortality on the third day of administering the 8% dose. According to the gas chromatography with mass spectrometry data, the putative main components of the n-hexane extract were hexadecanoic acid, ethyl ester (18.99%), 9,12-octadecadienoic acid (Z,Z)- (16.31%), and 9-octadecenal (16.23%). In contrast, the principal constituents of methanol extract were patchouli alcohol (28.1%), delta-guaiene (15.15%), and alpha-guaiene (11.93%). Furthermore, limonoids profiling of A. excelsa methanol extract was determined using Ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry. The number of limonoids identified tentatively was fifteen, such as 6-deacetylnimbin, nimbolidin C, nimbolide, 6-acetylnimbandiol, 6-deacetyl-nimbinene, salannol, 28-deoxonimbolide, gedunin, nimbandiol, epoxyazadiradione, azadirone, 2',3'-dihydrosalannin, marrangin, nimbocinol, and azadirachtin. They were the same as those reported in the seed and leaves of A. indica, but its largest component in A. excelsa was 6-deacetylnimbin. As a result, the presence of these compounds may be responsible for the anti-termite activity of A. excelsa seed kernel extract. Additionally, column chromatography of methanol extract yielded 6-deacetylnimbin, which was found to be antifeedant and termiticide against C. curvignathus.

A New Putative Chitinase from Reticulitermes speratus KMT001

  • Ham, Youngseok;Park, Han-Saem;Kim, Yeong-Suk;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권3호
    • /
    • pp.371-380
    • /
    • 2019
  • Termites are pests that cause serious economic and cultural damage by digesting wood cellulose. Termites are arthropods and have an epidermis surrounded by a chitin layer. To maintain a healthy epidermis, termites have chitinase (${\beta}$-1,4-poly-N-acetyl glucosamidinase, EC 3.2.1.14), an enzyme that hydrolyzes the ${\beta}$-1,4 bond of chitin. In this study, the amino acid sequence of the gene, which is presumed to be termite chitinolytic enzyme (NCBI accession no. KC477099), was obtained from a transcriptomic analysis of Reticulitermes speratus KMT001 in Bukhan Mountain, Korea. An NCBI protein BLAST search confirmed that the protein is a glycoside hydrolase family 18 (GH18). The highest homology value found was 47%, with a chitinase from Araneus ventricosus. Phylogenetic analysis indicated that the KC477099 protein has the same origins as those of arthropods but has a very low similarity with other arthropod chitinases, resulting in separation at an early stage of evolution. The KC477099 protein contains two conserved motifs, which encode the general enzymatic characteristics of the GH18 group. The amino acid sequences $Asp^{156}-Trp^{157}-Glu^{158}$, which play an important role in the enzymatic activity of the GH18 group, were also present. This study suggests that the termite KC477099 protein is a new type of chitinase, which is evolutionarily distant from other insect chitinases.

Metagenomic Analysis of Novel Lignocellulose-Degrading Enzymes from Higher Termite Guts Inhabiting Microbes

  • Nimchua, Thidarat;Thongaram, Taksawan;Uengwetwanit, Tanaporn;Pongpattanakitshote, Somchai;Eurwilaichitr, Lily
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.462-469
    • /
    • 2012
  • A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from $50^{\circ}C$ to $55^{\circ}C$. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.

선암사 조사당의 흰개미 피해 및 환경 특성 통계 분석 (Statistical Analysis of Termite Damage and Environmental Characteristics of the Josadang Shrine in Seonamsa Temple)

  • 임보아;김명남;김영희;이정민;조창욱;정소영
    • 보존과학회지
    • /
    • 제35권3호
    • /
    • pp.197-208
    • /
    • 2019
  • 목조문화재의 생물피해는 보존환경과 밀접한 관계가 있고, 급속한 기후변화로 인해 피해가 가속화될 수 있으므로 문화재 보존을 위해서는 환경 특성을 파악하는 것이 중요하다. 따라서 본 연구에서는 순천 선암사의 조사당을 대상으로 흰개미 피해 현황과 미기상, 중기상, 국지기상의 주요 환경인자 특성을 관찰하였다. 그 결과, 조사당 북서쪽 기둥에서 뚜렷한 육안피해와 흰개미 탐지견 반응이 있었고, 북동쪽 기둥에서 흰개미 탐지반응이 추가되었다. 이 기둥들은 전면에 위치한 기둥보다 표면온도가 낮고 표면 수분량과 함수율이 높은 특징이 있었다. 각 기상의 전체 시간 평균온도는 비슷하였으나 상대습도는 차이가 있었고, 미기상은 70% 이상의 높은 상대습도가 빈번히 나타났다. 특히 조사당 내부에서 흰개미 활동 일수가 가장 많았던 것으로 산출되었다. 통계 분석 결과에서는 F 비를 통해 세 기상 간 차이가 있음을 확인하였다. 또한 온도와 상대습도의 t 통계량을 통해 환경인자 간의 차이는 온도보다 습도가 더 크고, 중기상과 국지기상에서는 상대습도 차이가 더 큰 것이 확인되었다.

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • 제48권6호
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Elizabethkingia miricola BM10, a New Symbiotic Bacterium Isolated from the Hindgut of the Termite Reticulitermes speratus KMT001

  • LEE, Dongmin;KIM, Young-Kyoon;KIM, Yeong-Suk;KIM, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권6호
    • /
    • pp.692-699
    • /
    • 2019
  • Elizabethkingia miricola BM10, a symbiotic bacterium, has been isolated from the hindgut of Reticulitermes speratus KMT001, a termite which occurs on Bukhan Mountain in Seoul, Korea. This strain demonstrated a symbiotic characteristic, in that it lacked endo-${\beta}$-1,4-glucanase activity, in a previous study. The major fatty acids of E. miricola BM10 were iso-$C_{15:0}$, iso-$C_{17:0}$ 3-OH, and summed feature 3 (iso-$C_{16:1}{\omega}7c/C_{16:1}{\omega}6c$). The content of iso-$C_{17:0}$ 3-OH was higher, while those of ECL 13.566, iso-$C_{17:11}{\omega}9c$, and summed feature 4 were lower than the other three type-strains of the Elizabethkingia genus. The 16S rRNA phylogenetic analysis confirmed that E. miricola BM10 is a new species. The whole genome of E. miricola BM10 was sequenced. The average nucleotide identity of strain BM10 as evaluated by pairwise comparison with E. anophelis R26, E. meningoseptica ATCC 13253, and E. miricola GTC 862 was shown to be 91.5%, 81.2%, and 94.29%, respectively. Based on our study results, E. miricola BM10 appears to represent a new strain of the genus Elizabethkingia.

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam;Thulasi, Appoothy;Bagath, M.;Kumar, Duvvuri Prasanna;Santosh, Sunil Singh;Palanivel, Chenniappan;Jose, Vazhakkala Lyju;Sampath, K.T.
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.52-57
    • /
    • 2011
  • Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성 (Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities)

  • 유지연;장은진;박수연;손홍주
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.