Browse > Article
http://dx.doi.org/10.4014/jmb.1108.08037

Metagenomic Analysis of Novel Lignocellulose-Degrading Enzymes from Higher Termite Guts Inhabiting Microbes  

Nimchua, Thidarat (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC))
Thongaram, Taksawan (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC))
Uengwetwanit, Tanaporn (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC))
Pongpattanakitshote, Somchai (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC))
Eurwilaichitr, Lily (Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC))
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.4, 2012 , pp. 462-469 More about this Journal
Abstract
A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from $50^{\circ}C$ to $55^{\circ}C$. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.
Keywords
Alkaline cellulase; alkaline xylanase; metagenomics; termite gut; uncultured bacteria;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Qinnghe, C., Y. Xiaoyu, N. Tiangui, J. Cheng, and M. Qiugang. 2004. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem. 39: 1561-1566.   DOI   ScienceOn
2 Saxena, S., J. Bahadur, and A. Varma. 1991. Production and localisation of carboxymethylcellulase, xylanase and ${\beta}$-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34: 668-670.   DOI   ScienceOn
3 Shao, W. and J. Wiegel. 1992. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J. Bacteriol. 174: 5848-5853.   DOI
4 Shin, E. S., M. J. Yang, K. H. Jung, E. J. Kwon, J. S. Jung, S. K. Park, et al. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68: 3496-3501.   DOI   ScienceOn
5 Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria, pp. 10-72. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic and Professional, New York, U.S.A.
6 Tartar, A., M. M. Wheeler, X. Zhou, M. R. Coy, D. G. Boucias, and M. E. Scharf. 2009. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels 2: 25.   DOI   ScienceOn
7 Todaka, N., S. Moriya, K. Saita, T. Hondo, I. Kiuchi, H. Takasu, et al. 2007. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol. Ecol. 59: 592-599.   DOI   ScienceOn
8 Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565.   DOI   ScienceOn
9 Yang, V. W., Z. Zhuang, G. Elegir, and T. W. Jeffries. 1995. Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. J. Ind. Microbiol. 15: 434-441.   DOI   ScienceOn
10 Yoshio, W., S. Naoya, and F. Takema. 2003. Isolation of actinomycetes from termites' guts. Biosci. Biotechnol. Biochem. 67: 1797-1801.   DOI   ScienceOn
11 Zhang, H. and A. Brune. 2004. Characterization and partial purification of proteinases from the highly alkaline midgut of the humivorous larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol. Biochem. 36: 435-442.   DOI   ScienceOn
12 Hall, J., G. W. Black, L. M. Ferreira, S. J. Millward-Sadler, B. R. Ali, G. P. Hazlewood, and H. J. Gilbert. 1995. The noncatalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J. 309: 749-756.   DOI
13 Kataeva, I. A., D. L. Blum, L. Xin-Liang, and L. G. Ljungdahl. 2001. Do domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? Prot. Eng. 14: 167-172.   DOI
14 Healy, F. G., R. M. Ray, H. C. Aldrich, A. C. Wilkie, L. O. Ingram, and K. T. Shanmugam. 1995. Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43: 667-674.   DOI   ScienceOn
15 Hongoh, Y., T. Sato, M. F. Dolan, S. Noda, S. Ui, T. Kudo, and M. Ohkuma. 2007. The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the "synergistes" group. Appl. Environ. Microbiol. 73: 6270-6276.   DOI   ScienceOn
16 Jiang, Z. Q., W. Deng, L. T. Li, C. H. Ding, I. Kusakabe, and S. S. Tan. 2004. A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnol. Lett. 26: 431-436.   DOI
17 Kim, D. Y., M. K. Han, H. W. Oh, D. S. Park, S. J. Kim, S. G. Lee, et al. 2010. Catalytic properties of a GH10 endo-${\beta}$-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J. Mol. Catal. B Enz. 62: 32-39.   DOI   ScienceOn
18 Kim, S. J., C. M. Lee, B. R. Han, M. Y. Kim, Y. S. Yeo, S. H. Yoon, et al. 2008. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol. Lett. 282: 44-51.   DOI   ScienceOn
19 Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.   DOI   ScienceOn
20 Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996. Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol. Gen. Genet. 252: 493-496.
21 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
22 Mitsumori, M. and H. Minato. 2000. Identification of the cellulose-binding domain of Fibrobacter succinogenes endoglucanase F. FEMS Microbiol. Lett. 183: 99-103.   DOI   ScienceOn
23 Notenboom, V., A. B. Boraston, P. Chiu, A. C. J. Freelove, D. G. Kilburn, and D. R. Rose. 2001. Recognition of cellooligosaccharides by a family 17 carbohydrate-binding module: An x-ray crystallographic, thermodynamic and mutagenic study. J. Mol. Biol. 314: 797-806.   DOI   ScienceOn
24 Prillinger, H., R. Messner, H. Konig, R. Bauer, K. Lopandic, O. Molnar, et al. 1996. Yeasts associated with termites: A phenotypic and genotypic characterization and use of co-evolution for dating evolutionary radiations in asco- and basidiomycetes. Syst. Appl. Microbiol. 19: 265-293.   DOI   ScienceOn
25 Betsy, L. and J. H. D. Wu. 1998. Involvement of both dockerin subdomains in assembly of the Clostridium thermocellum cellulosome. J. Bacteriol. 180: 6581-6585.
26 Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol. Bioeng. 96: 48-56.   DOI   ScienceOn
27 Bayer, E. A., E. Morag, R. Lamed, S. Yaron, and Y. Shoham. 1998. Cellulosome structure: Four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics, carbohydrases from Trichoderma reesei and other microorganisms, pp. 39-65. In M. Claeyssens, W. Nerinckx, and K. Piens (eds.). The Royal Society of Chemistry, London, UK.
28 Breznak, J. A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487.   DOI   ScienceOn
29 Bignell, D. E. and P. Eggleton. 1995. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insec. Soc. 42: 57-69.   DOI   ScienceOn
30 Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, et al. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617.   DOI   ScienceOn
31 Bunterngsook, B., P. Kanokratana, T. Thongaram, S. Tanapongpipat, T. Uengwetwanit, S. Rachdawong, et al. 2010. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome. Biosci. Biotech. Biochem. 74: 1848-1854.   DOI   ScienceOn
32 Cowan, D., Q. Meyer, W. Stafford, S. Muyanga, R. Cameron, and P. Wittwer. 2005. Metagenomic gene discovery: Past, present and future. Trends Biotechnol. 23: 321-329.   DOI   ScienceOn
33 Dadd, R. H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol. 21: 1847-1853.   DOI   ScienceOn
34 Dow, J. A. T. 1992. pH Gradients in Lepidopteran midgut. J. Exp. Biol. 172: 355-375.
35 Ducros, V., M. Czjzek, A. Belaich, C. Gaudin, H. P. Fierobe, J. P. Belaich, et al. 1995. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3: 939-949.   DOI   ScienceOn
36 Esteghlalian, A. R., M. M. Kazaoka, B. A. Lowery, A. Varvak, B. Hancock, T. Woodward, et al. 2008. Prebleaching of softwood and hardwood pulps by a high performance xylanase belonging to a novel clade of glycosyl hydrolase family 11. Enzyme Microb. Technol. 42: 395-403.   DOI   ScienceOn
37 Graber, J. R., J. R. Leadbetter, and J. A. Breznak. 2004. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl. Environ. Microbiol. 70: 1315-1320.   DOI   ScienceOn
38 Ferrer, M., O. V. Golyshina, T. N. Chernikova, A. N. Khachane, D. Reyes-Duarte, V. A. P. M. D. Santos, et al. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7: 1996-2010.   DOI   ScienceOn
39 Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194.   DOI