DOI QR코드

DOI QR Code

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute) ;
  • Avchar, Rameshwar (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute) ;
  • Arora, Riya (Savitribai Phule Pune University) ;
  • Lanjekar, Vikram (Bioenergy Group, MACS-Agharkar Research Institute) ;
  • Dhakephalkar, Prashant K. (Bioenergy Group, MACS-Agharkar Research Institute) ;
  • Dagar, Sumit S. (Bioenergy Group, MACS-Agharkar Research Institute) ;
  • Baghela, Abhishek (National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute)
  • Received : 2020.05.01
  • Accepted : 2020.09.28
  • Published : 2020.12.31

Abstract

Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Keywords

References

  1. Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study. 5th ed. Amsterdam (Netherlands): Elsevier; 2011.
  2. Starmer WT, Lachance MA. Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout Hiroshima, editors. The yeasts. 5th ed. Amsterdam (Netherlands): Elsevier; 2011. p. 65-83.
  3. Suh SO, McHugh JV, Pollock DD, et al. The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res. 2005;109(Pt 3):261-265. https://doi.org/10.1017/S0953756205002388
  4. Suh SO, Marshall CJ, McHugh JV, et al. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol. 2003;12(11):3137-3145. https://doi.org/10.1046/j.1365-294X.2003.01973.x
  5. Suh SO, Gibson CM, Blackwell M. Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int J Syst Evol Microbiol. 2004;54(Pt 5):1883-1890. https://doi.org/10.1099/ijs.0.63152-0
  6. Blackwell M. Made for each other: ascomycete yeasts and insects. Microbiol Spectr. 2017;5:945-962. https://doi.org/10.1128/microbiolspec.FUNK-0081-2016
  7. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12(3):168-180. https://doi.org/10.1038/nrmicro3182
  8. Schafer A, Konrad R, Kuhnigk T, et al. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol. 1996;80(5):471-478. https://doi.org/10.1111/j.1365-2672.1996.tb03245.x
  9. Prillinger H, Messner R, Konig H, et al. Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes. Syst Appl Microbiol. 1996;19(2):265-283. https://doi.org/10.1016/S0723-2020(96)80053-1
  10. Handel S, Wang T, Yurkov AM, et al. Sugiyamaella mastotermitis sp. nov. and Papiliotrema odontotermitis f.a., sp. nov. from the gut of the termites Mastotermes darwiniensis and Odontotermes obesus. Int J Syst Evol Microbiol. 2016;66(11):4600-4608. https://doi.org/10.1099/ijsem.0.001397
  11. Ali SS, Wu J, Xie R, et al. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One. 2017;12(7):e0181141. https://doi.org/10.1371/journal.pone.0181141
  12. Kumar S, Singh SP, Mishra IM, et al. Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol. 2009;32(4):517-526. https://doi.org/10.1002/ceat.200800442
  13. Ohkuma M, Yuzawa H, Amornsak W, et al. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol Phylogenet Evol. 2004;31(2):701-710. https://doi.org/10.1016/j.ympev.2003.09.009
  14. Aamir S, Sutar S, Singh SK, et al. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quarant. 2015;5(2):74-81. https://doi.org/10.5943/ppq/5/2/6
  15. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  16. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  17. Lone MA, Wani MR, Sheikh SA, et al. Evaluation of cellulase enzyme secreted by some common and stirring Rhizoshere fungi of Juglans regia L.by DNS Method. J Enzym Research. 2012;3:18-22.
  18. Lara CA, Santos RO, Cadete RM, et al. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie Van Leeuwenhoek. 2014;105(6):1107-1119. https://doi.org/10.1007/s10482-014-0172-x
  19. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426-428. https://doi.org/10.1021/ac60147a030
  20. Yan J, Wei Z, Wang Q, et al. Bioethanol production from sodium hydroxide/hydrogen peroxidepretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour Technol. 2015;193:103-109. https://doi.org/10.1016/j.biortech.2015.06.069
  21. Borzani W, Schmidell W, Lima UA, et al. Biotecnologia industrial: engenharia bioquimica. Vol. 2. Sao Paulo: Edgard Blucher; 2001.
  22. Sharma S, Nandal P, Arora A. Ethanol production from NaOH pretreated rice straw: a cost effective option to manage rice crop residue. Waste Biomass Valor. 2019;10(11):3427-3434. https://doi.org/10.1007/s12649-018-0360-4
  23. Shanbhag RR, Sundararaj R. Host range, pest status and distribution of wood destroying termites of India. J Trop Asian Entomol. 2012; 2:12-27.
  24. Adsul MG, Bastawde KB, Gokhale DV. Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Bioresour Technol. 2009;100(24):6488-6495. https://doi.org/10.1016/j.biortech.2009.07.064
  25. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 2005;29(1):3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  26. Stevens BJH, Payne J. Cellulase and xylanase production by yeasts of the genus Trichosporon. J Gen Microbiol. 1977;100(2):381-393. https://doi.org/10.1099/00221287-100-2-381
  27. Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003;30(5):279-291. https://doi.org/10.1007/s10295-003-0049-x
  28. Pandey AK, Kumar M, Kumari S, et al. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnol Biofuels. 2019;12(1):40. https://doi.org/10.1186/s13068-019-1379-x

Cited by

  1. Nectar Yeast Community of Tropical Flowering Plants and Assessment of Their Osmotolerance and Xylitol-Producing Potential vol.79, pp.1, 2022, https://doi.org/10.1007/s00284-021-02700-9
  2. Compost as an untapped niche for thermotolerant yeasts capable of high‐temperature ethanol production vol.74, pp.1, 2020, https://doi.org/10.1111/lam.13593