Browse > Article
http://dx.doi.org/10.5658/WOOD.2019.47.3.371

A New Putative Chitinase from Reticulitermes speratus KMT001  

Ham, Youngseok (Department of Forest Products and Biotechnology, Kookmin University)
Park, Han-Saem (Department of Forest Products and Biotechnology, Kookmin University)
Kim, Yeong-Suk (Department of Forest Products and Biotechnology, Kookmin University)
Kim, Tae-Jong (Department of Forest Products and Biotechnology, Kookmin University)
Publication Information
Journal of the Korean Wood Science and Technology / v.47, no.3, 2019 , pp. 371-380 More about this Journal
Abstract
Termites are pests that cause serious economic and cultural damage by digesting wood cellulose. Termites are arthropods and have an epidermis surrounded by a chitin layer. To maintain a healthy epidermis, termites have chitinase (${\beta}$-1,4-poly-N-acetyl glucosamidinase, EC 3.2.1.14), an enzyme that hydrolyzes the ${\beta}$-1,4 bond of chitin. In this study, the amino acid sequence of the gene, which is presumed to be termite chitinolytic enzyme (NCBI accession no. KC477099), was obtained from a transcriptomic analysis of Reticulitermes speratus KMT001 in Bukhan Mountain, Korea. An NCBI protein BLAST search confirmed that the protein is a glycoside hydrolase family 18 (GH18). The highest homology value found was 47%, with a chitinase from Araneus ventricosus. Phylogenetic analysis indicated that the KC477099 protein has the same origins as those of arthropods but has a very low similarity with other arthropod chitinases, resulting in separation at an early stage of evolution. The KC477099 protein contains two conserved motifs, which encode the general enzymatic characteristics of the GH18 group. The amino acid sequences $Asp^{156}-Trp^{157}-Glu^{158}$, which play an important role in the enzymatic activity of the GH18 group, were also present. This study suggests that the termite KC477099 protein is a new type of chitinase, which is evolutionarily distant from other insect chitinases.
Keywords
termite; Reticulitermes speratus KMT001; phylogenetic analysis; chitinase;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bussink, A.P., Speijer, D., Aerts, J.M., Boot, R.G. 2007. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 177(2):959-970.   DOI
2 Cho, M.J., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. Journal of the Korean Wood Science and Technology 38(2): 135-139.   DOI
3 Fukamizo, T., Speirs, R.D., Kramer, K.J. 1985. Comparative biochemistry of mycophagous and non-mycophagous grain beetles. Chitinolytic activities of foreign and sawtoothed grain beetles. Comparative Biochemistry and Physiology BBiochemistry & Molecular Biology 81(1): 207-209.   DOI
4 Fukamizo, T. 2000. Chitinolytic enzymes: catalysis, substrate binding, and their application. Current Protein & Peptide Science 1(1): 105-124.   DOI
5 Guan, Y.Q., Chen, J.M., Li, Z.B., Feng, Q.L., Liu, J.M. 2011. Immobilisation of bifenthrin for termite control. Pest Management Science 67(2): 244-251.   DOI
6 Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755   DOI
7 Henrissat, B. 1999. Classification of chitinases modules. EXS 87: 137-156.
8 Han, J.H., Lee, K.S., Li, J., Kim, I., Je, Y.H., Kim, D.H., Sohn, H.D., Jin, B.R. 2005. Cloning and expression of a fat body-specific chitinase cDNA from the spider, Araneus ventricosus. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology 140(3): 427-435.   DOI
9 Henrissat, B., Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293 (Pt 3): 781-788.   DOI
10 Henrissat, B., Davies, G. 1997. Structural and sequencebased classification of glycoside hydrolases. Current Opinion in Structural Biology 7(5): 637-644.   DOI
11 Huang, Q.S., Yan, J.H., Tang, J.Y., Tao, Y.M., Xie, X.L., Wang, Y., Wei, X.Q., Yan, Q.H., Chen, Q.X. 2010. Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish and Shellfish Immunology 29(1): 75-81.   DOI
12 Husen, T.J., Kamble, S.T. 2013. Delayed toxicity of two chitinolytic enzyme inhibitors (psammaplin A and pentoxifylline) against eastern subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 106(4): 1788-1793.   DOI
13 Husen, T.J., Kamble, S.T., Stone, J.M. 2015. Effect of pentoxifylline on chitinolytic enzyme activity in the eastern subterranean termite (Isoptera:Rhinotermitidae). Journal of Entomological Science 50(4): 295-310.   DOI
14 Kawada, M., Hachiya, Y., Arihiro, A., Mizoguchi, E. 2007. Role of mammalian chitinases in inflammatory conditions. The Keio Journal of Medicine 56(1):21-27.   DOI
15 Kramer, K.J., Muthukrishnan, S. 1997. Insect chitinases:Molecular biology and potential use as biopesticides. Insect Biochemistry and Molecular Biology 27(11): 887-900.   DOI
16 Kim, S.H., Chung, Y.J. 2017. Ingestion toxicity of fipronil on Reticulitermes speratus kyushuensis (Isoptera: Rhinotermitidae) and its applicability as a termite bait. Journal of the Korean Wood Science and Technology 45(2): 159-167.   DOI
17 Korb, J., Hoffmann, K., Hartfelder, K. 2012. Molting dynamics and juvenile hormone titer profiles in the nymphal stages of a lower termite, Cryptotermes secundus (Kalotermitidae)--signatures of developmental plasticity. Journal of Insect Physiology 58(3): 376-383.   DOI
18 Kramer, K.J., Koga, D. 1986. Insect chitin - physical state, synthesis, degradation and metabolicregulation. Insect Biochemistry 16(6): 851-877.   DOI
19 Liu, N., Zhang, L., Zhou, H., Zhang, M., Yan, X., Wang, Q., Long, Y., Xie, L., Wang, S., Huang, Y., Zhou, Z. 2013. Metagenomic insights into metabolic capacities of the gut microbiota in a funguscultivating termite (Odontotermes yunnanensis). PLOS ONE 8(7): e69184.   DOI
20 Lu, Y., Zen, K.C., Muthukrishnan, S., Kramer, K.J. 2002. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochemistry and Molecular Biology 32(11): 1369-1382.   DOI
21 Matsui, T., Tokuda, G., Shinzato, N. 2009. Termites as functional gene resources. Recent Patents on Biotechnology, 3(1): 10-18.   DOI
22 Merzendorfer, H., Zimoch, L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology 206(24): 4393-4412.   DOI
23 Rathore, A.S., Gupta, R.D. 2015. Chitinases from bacteria to human: Properties, applications, and future perspectives. Enzyme Research 2015 (Article ID 791907): 8.
24 Mishra, S.C., Sensarma, P.K. 1981. Chitinase activity in the digestive-track of termites (Isoptera). Material Und Organismen 16(2): 157-160.
25 Mun, S.P., Nicholas, D.D. 2017. Effect of proanthocyanidin-rich efrom Pinus radiata bark on termite feeding deterrence. Journal of the Korean Wood Science and Technology 45(6): 702-727.
26 van Eijk, M., van Roomen, C.P., Renkema, G.H., Bussink, A.P., Andrews, L., Blommaart, E.F., Sugar, A., Verhoeven, A.J., Boot, R.G., Aerts, J.M. 2005. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. International Immunology 17(11): 1505-1512.   DOI
27 Zhang, H., Huang, X., Fukamizo, T., Muthukrishnan, S., Kramer, K.J. 2002. Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase. Insect Biochemistry and Molecular Biology 32(11): 1477-1488.   DOI
28 Zhu, K.Y., Merzendorfer, H., Zhang, W., Zhang, J., Muthukrishnan, S. 2016. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology 61(1): 177-196.   DOI
29 Nei, M., Saitou, N. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
30 Park, H.-S., Ham, Y., Ahn, H.-H., Shin, K., Kim, Y.-S., Kim, T.-J. 2014. A new ${\alpha}$-amylase from Reticulitermes speratus KMT1. Journal of the Korean Wood Science and Technology 42(2):149-156.   DOI
31 Reardon, D., Farber, G.K. 1995. The structure and evolution of alpha/beta barrel proteins. The FASEB Journal 9(7): 497-503.   DOI
32 Synstad, B., Gaseidnes, S., Van Aalten, D.M., Vriend, G., Nielsen, J.E., Eijsink, V.G. 2004. Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. European Journal of Biochemistry 271(2): 253-262.   DOI
33 Renkema, G.H., Boot, R.G., Au, F.L., Donker-Koopman, W.E., Strijland, A., Muijsers, A.O., Hrebicek, M., Aerts, J.M. 1998. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. European Journal of Biochemistry 251(1-2): 504-509.   DOI
34 Reynolds, S.E., Samuels, R.I. 1996. Physiology and biochemistry of insect moulting fluid. Advances in Insect Physiology 26: 157-232.   DOI
35 Sandoval-Mojica, A.F., Scharf, M.E. 2016. Silencing gut genes associated with the peritrophic matrix of Reticulitermes flavipes (Blattodea: Rhinotermitidae) increases susceptibility to termiticides. Insect Molecular Biology 25(6): 734-744.   DOI
36 Sharma, N., Sharma, K.P., Gaur, R., Gupta, V.K. 2011. Role of chitinase in plant defense. Asian Journal of Biochemistry 6(1): 29-37.   DOI
37 Sinnott, M. 1990. Catalytic mechanisms of enzymic glycosyl transfer. Chemical Reviews 90(7):1171-1202.   DOI
38 Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M., Ishihara, M. 2002. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Bioscience, Biotechnology, and Biochemistry 66(5): 970-977.   DOI
39 Terwisscha van Scheltinga, A.C., Hennig, M., Dijkstra, B.W. 1996. The 1.8 A resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. Journal of Molecular Biology 262(2): 243-257.   DOI
40 Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8): 1596-1599.   DOI
41 Thomas, C.J., Gooday, G.W., King, L.A., Possee, R.D. 2000. Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. Journal of General Virology 81(Pt 5):1403-1411.   DOI
42 Arakane, Y., Muthukrishnan, S. 2010. Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences 67(2): 201-216.   DOI
43 Brydon, L.J., Gooday, G.W., Chappell, L.H., King, T.P. 1987. Chitin in egg shells of Onchocerca gibsoni and Onchocerca volvulus. Molecular and Biochemical Parasitology 25(3): 267-272.   DOI
44 Aronson, N.N., Blanchard, C.J., Madura, J.D. 1997. Homology modeling of glycosyl hydrolase family 18 enzymes and proteins. Journal of Chemical Information and Computer Sciences 37(6): 999-1005.   DOI
45 Badariotti, F., Thuau, R., Lelong, C., Dubos, M.-P., Favrel, P. 2007. Characterization of an atypical family 18 chitinase from the oyster Crassostrea gigas: Evidence for a role in early development and immunity. Developmental & Comparative Immunology 31(6): 559-570.   DOI
46 Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology 22: 87-108.   DOI