• Title/Summary/Keyword: terminal-phase guidance

Search Result 20, Processing Time 0.026 seconds

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Passive homing performance improvement in the terminal engagement phase (종말단계에서의 수동호밍 성능개선연구)

  • 송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.351-354
    • /
    • 1996
  • A new target adaptive guidance (TAG) algorithm is proposed to engage the aim point formed by adding a bias to the information from an infrared (IR) seeker for improving passive homing guidance effectiveness. The TAG algorithm utilizes an observability enhancing mid-course guidance algorithm to obtain convergent estimates of state variables involved particularly in range channel otherwise unavailable from passive sensors. Simulation results indicate that the TAG algorithm provides improved terminal effectiveness without computational complexities.

  • PDF

OPTIMAL IMPACT ANGLE CONSTRAINED GUIDANCE WITH THE SEEKER'S LOCK-ON CONDITION

  • PARK, BONG-GYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.289-303
    • /
    • 2015
  • In this paper, an optimal guidance law with terminal angle constraint considering the seeker's lock-on condition, in which the target is located within the field-of-view (FOV) and detection range limits at the end of the midcourse phase, is proposed. The optimal solution is obtained by solving an optimal control problem minimizing the energy cost function weighted by a power of range-to-go subject to the terminal constraints, which can shape the guidance commands and the missile trajectories adjusting guidance gains of the weighting function. The proposed guidance law can be applied to both of the midcourse and terminal phases by setting the desired relative range and look angle to the final interception conditions. The performance of the proposed guidance law is analyzed through nonlinear simulations for various engagement conditions.

Optimal guidance with terminal impact angle and control constraint (표적충돌각과 최대가속도 제한을 고려한 최적유도기법)

  • 류창경;조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.601-606
    • /
    • 1992
  • In this paper, we consider an optimal guidance problem with both the terminal impact angle and control constraints in addition to the usual zero miss distance constraint. We first present the optimal solution of the problem for the missile of an arbitrary order, and show that it is a linear combination of a step response and a ramp response of the missile. Therefore the usual practice of using the control obtained by saturating the optimal solution for the case of unlimited control may result in a large terminal miss. A method called the initial command saturation is suggested to reduce this terminal miss, where the control in the initial phase of guidance is forced to be saturated until a certain condition for a guidance variable is met.

  • PDF

Guidance Law for Agile Turn of Air-to-Air Missile During Boost Phase

  • Han, Seungyeop;Bai, Ji Hoon;Hong, Seong-Min;Roh, Heekun;Tahk, Min-Jea;Yun, Joongsup;Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.709-718
    • /
    • 2017
  • This paper proposes the guidance laws for an agile turn of air-to-air missiles during the initial boost phase. Optimal solution for the agile turn is obtained based on the optimal control theory with a simplified missile dynamic model. Angle-of-attack command generating methods for completion of agile turn are then proposed from the optimal solution. Collision triangle condition for non-maneuvering target is reviewed and implemented for update of terminal condition for the agile turn. The performance of the proposed method is compared with an existing homing guidance law and the minimum-time optimal solution through simulations under various initial engagement scenarios. Simulation results verify that transition to homing phase after boost phase with the proposed method is more effective than direct usage of the homing guidance law.

Dynamic Modeling and Design of Controller based on Thrusters for Korean Lunar Module (달 착륙선의 동역학 모델링 및 추력기 기반 제어기 설계)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper deals with dynamic modeling and controller design of a future Korean lunar module planned to be launched 2020's in Korea. For dynamic modeling of the lunar module, we first assume the lunar module as a rigid body. And we derive equations of motion for the lunar module by considering allocation of main thrusters and reaction thrusters. With the equation of motion, we design the controller based on the quaternion. A Pulse Width Pulse Frequency modulator(PWPFM) is selected for generating on/off signal. Finally, we construct a 2-phase descent mode including initial guidance mode, terminal guidance mode. The MATLAB simulation is performed for evaluating the descent ability and final landing velocity. The dynamic modeling and descent simulation of the lunar module in this paper could be applied for developing the future work of the Korean lunar exploration program.

A Feedback-Form of Terminal-Phase Optimal Guidance Law for BTT Missiles Considering Autopilot Dynamics (자동조종장치 동역학을 고려한 궤환 형태의 BTT 미사일용 최적 종말 유도 법칙)

  • Yoo, Seong-Jae;Hong, Jin-Woo;Ha, In-Joong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • In contrast with STT missiles, the guidance law design for BTT missiles should be based on 3-dimensional pursuit kinematics, since the pitch and roll channels of BTT missiles are coupled dynamically. More generally than the prior works, the dynamics of pitch and roll channels, as well as 3-dimensional pursuit kinematics are considered in the design of our terminal-phase optimal guidance law for BTT missiles proposed in this paper. Thereby, the proposed optimal guidance law guarantees high capturability with small miss distance without significant performance degradation due to time-lag effect even in case of relatively slow autopilot dynamics. Moreover, the resulting optimal guidance law is expressed explicitly in feedback-form with the coefficients given as the functions of time-to-go. The effectiveness and practicality of our work is demonstrated through various simulation results.

A Guidance Law with a Switching Logic for Maintaining Seeker's Lock-on for Stationary Targets

  • Sang, Dae-Kyu;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Modem anti-ship missiles employ complex and sophisticated guidance laws to hit the target and enhance their survivability by executing additional maneuvers. However, such maneuvers may cause the target to move out of the missile seeker's Field-Of-View (FOV). Maintaining seeker lock-on during an engagement is a critical factor for missile guidance. In this paper, a guidance law switching logic that maintains seeker lock-on and a simple guidance law that keeps the target look angle of the seeker constant is proposed. The proposed method can be used for the terminal homing phase, and can be switched from any kind of guidance laws if a proper switching condition is satisfied. The minimum and maximum flight time calculation method in consideration of the missile maneuver limit and the FOV of the seeker is also provided.

A Study of Optimal Impact Angle Control Laws (최적 충돌각 제어법칙에 관한 연구)

  • 송택렬;신상진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.211-218
    • /
    • 1998
  • As a part of trajectory modulation to increase system survivability and terminal effectiveness, impact angle control is required in the terminal phase of tactical missile systems. The missile systems are not allowed to have high altitude to reduce probability of detection by sensors of missile defense systems. In this paper, an analytic form of a time-optimal control law is suggested in the case of constrained missile maneuverability and impact angle under the assumption of a zero-lag autopilot. The control law is obtained by establishing optimal missile-target engagement geometry in the vertical plane. Extension of the law for missiles with autopilot response lags requiring a numerical solution is studied by introducing an iterative algorithm for optimal switching time determination of which the initial switching instants are obtained from the analytic solution. Also suggested is a closed-form impact angle control law derived by an energy-optimal approach. The performances of the proposed guidance laws are evaluated by a series of computer runs.

  • PDF

Reference Trajectory Optimization of a Launch Vehicle M-3H-3 for Scientific Missions (과학위성 발사체 M-3H-3의 기준궤적 최적화)

  • Lee, Seung-H.;Choi, Jae-W.;Lee, Jang-G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.361-365
    • /
    • 1991
  • The problem being considered here is the determination of optimal guidance laws for a launch vehicle for scientific missions. The optimal guidance commands are determined in the sense that the least amount of fuel is used. A numerical solution was obtained for the case where the position and velocity state variables satisfy a specified constraint at the time of thrust cutoff. The method used here is based on the Pontryagin's maximum principle. This is the method of solving a problem in the calculus of variations. In particular, it applies to the problem considered here where the magnitude of the control is bounded. Simulations for the optimal guidance algorithm, during the 2nd and the 3rd-stage flight of the Japanese rocket M-3H-3, are carried out. The results show that the guided trajectory that satisfying the terminal constraints is optimal, and the guidance algorithm works well in the presence of some errors during the 1st-stage pre-programmed guidance phase.

  • PDF