
J. KSIAM Vol.19, No.3, 289–303, 2015 http://dx.doi.org/10.12941/jksiam.2015.19.289

OPTIMAL IMPACT ANGLE CONSTRAINED GUIDANCE WITH THE SEEKER’S
LOCK-ON CONDITION

BONG-GYUN PARK

PGM R&D LAB, LIG NEX1, SOUTH KOREA

E-mail address: bgpark0615@gmail.com

ABSTRACT. In this paper, an optimal guidance law with terminal angle constraint considering

the seeker’s lock-on condition, in which the target is located within the field-of-view (FOV) and

detection range limits at the end of the midcourse phase, is proposed. The optimal solution is

obtained by solving an optimal control problem minimizing the energy cost function weighted

by a power of range-to-go subject to the terminal constraints, which can shape the guidance

commands and the missile trajectories adjusting guidance gains of the weighting function. The

proposed guidance law can be applied to both of the midcourse and terminal phases by setting

the desired relative range and look angle to the final interception conditions. The performance

of the proposed guidance law is analyzed through nonlinear simulations for various engagement

conditions.

1. INTRODUCTION

In modern guidance law designs, impact angle control, which intercepts a target with specific

direction, is required to maximize the warhead effect and the kill probability. However, since

impact angle control makes the missile trajectories be highly curved and then may miss the

target within the seeker’s field-of-view (FOV), one should be careful to operate missiles with

the seeker having a limited FOV when implementing the impact angle control. Also, since the

seeker has the limited FOV and detection range, midcourse guidance should steer the missile

toward the proper position where the seeker can successfully lock on the target when the target

is located far away from the initial missile position.

Many researches on impact angle control have been conducted so far. Kim and Grider [1]

presented a suboptimal guidance law for a reentry vehicle with impact attitude angle constraint,

which is the first published paper relevant to impact angle control. Bryson and Ho [2] obtained

an optimal solution for the rendezvous problem subject to the terminal position and velocity

constraints, and the solution can be used for impact angle control by setting the rendezvous

course to the collision one. Song et al. [3] proposed an optimal guidance law with impact angle

constraint for varying velocity missiles against moving targets, and a target tracking filter is

combined with the proposed guidance law for real implementation. Ryoo et al. [4] presented a

generalized formulation of control energy minimization guidance laws with the desired impact
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angle for a constant speed missile with arbitrary order dynamics. As an extension of this

work, they proposed an optimal guidance law with terminal angle constraint solving a linear

quadratic optimal control problem with the control energy cost weighted by a power of time-

to-go [5]. Ratnoo and Ghose [6] formulated an impact angle control problem as a nonlinear

regulator problem and then solved the problem using state-dependent Riccati equation (SDRE)

technique. Lee et al. [7] handled optimality of linear time-varying guidance laws with impact

angle constraint using an inverse problem of optimal control theory.

Other approaches to deal with impact angle control problems utilize proportional navigation

guidance (PNG). Kim et al. [8] proposed a biased PNG to intercept targets with angular con-

straint. This guidance law includes a supplementary time-varying bias term in conventional

PNG in order to control the terminal angle constraint. Manchester and Savkin [9] introduced

a circular-navigation-guidance (CNG) law, which is based on the principle of following a cir-

cular trajectory to the target, to achieve the desired impact angle. Ratnoo and Ghose proposed

hybrid guidance laws to control the terminal angle constraint against stationary targets [10] and

nonstationary nonmaneuvering targets [11]. The proposed guidance laws in [10, 11] produced

an orientation trajectory for covering all impact angles from 0 to -π in the first phase and then

PNG commands with N ≥ 2 for stationary targets (or N ≥ 3 for moving targets) to intercept

the target with the desired impact angle in the final phase. Erer and Merttopçuoğlu [12] pro-

posed another two phase-typed guidance law consisting of conventional PNG and biased PNG

controlling the integral of bias to achieve the impact angle.

Most of the works mentioned above can apply to both of the midcourse and terminal phases,

but do not guarantee the seeker’s lock-on condition, in which the target is located within the

FOV and detection range limits, at switching instant of guidance phases. Some works, which

can consider the seeker’s lock-on condition, have been carried out. Whang [13] proposed

an optimal guidance law pointing a target at given range, which is obtained from linearized

equations of motion. Also, Jeon and Lee [14] addressed a similar guidance problem with

target pointing angle constraint at specific relative range, and they obtained the optimal solution

by directly solving the nonlinear dynamic equations without any linearization. The works

presented in [13, 14], however, have not considered the flight path angle constraint to control

the missile velocity direction.

In this paper, an optimal guidance law with impact angle constraint considering the seeker’s

lock-on condition is proposed for a constant speed missile against a stationary target. First,

a midcourse guidance law is derived based on optimal control theory, and then this guidance

law is modified by changing the desired values at the end of the midcourse phase to the final

interception values to be implemented in the terminal phase. Since the proposed guidance law

minimizes the energy cost function weighted by a power of range-to-go, it can modulate the

acceleration commands and the missile trajectories adjusting guidance gains of the weighting

function.

The outline of the paper is as follows. The guidance problem is formulated in Section 2.

Optimal guidance laws for the midcourse and terminal phases are derived in Section 3. Section

4 investigates the performance of the proposed guidance law through nonlinear simulations for

various engagement conditions. Section 5 describes the conclusions of this work
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2. PROBLEM FORMULATION

Consider the planar engagement geometry as shown in Fig. 1, where XI − O − YI is a

Cartesian inertial reference frame. The subscripts 0 and d stand for the initial and desired

states. V is the missile speed and a is the acceleration perpendicular to the velocity vector. r,

γ, and λ are the relative range between the missile and the target, the flight path angle, and the

line-of-sight (LOS) angle, respectively. Under the assumption that the angle of attack (AOA) is

small, which means that small acceleration commands are generated, we can define the seeker’s

look angle σ as an angle between the missile velocity and LOS vectors.

The nonlinear equations of motion, expressed in a polar coordinate system, are

ṙ = −V cosσ (2.1)

σ̇ = γ̇ − λ̇ =
a

V
+
V sinσ

r
(2.2)

γ̇ =
a

V
(2.3)

where the dot operator represents the derivative with respect to time t. The boundary conditions

for the midcourse phase are given as

r (t0) = r0, σ (t0) = σ0, γ (t0) = γ0 (2.4)

r (td) = rd, σ (td) = σd, γ (td) = γd (2.5)

Assuming that σ is small and dividing Eqs. (2.2) and (2.3) by Eq. (2.1), we have the

following linearized state differential equations:[
dσ
dr
dγ
dr

]
=

[ −1
r 0

0 0

] [
σ
γ

]
+

[ − 1
V 2

− 1
V 2

]
a (2.6)

Since the independent variable has changed from t to r, the boundary conditions of Eqs. (2.4)

and (2.5) are expressed as

σ (r0) = σ0, γ (r0) = γ0 (2.7)

σ (rd) = σd, γ (rd) = γd (2.8)

The seeker’s lock-on can be achieved when the relative range and the look angle with respect

to the target are within the detection range and field-of-view (FOV) limits, respectively. There-

fore, at the instant of the handover that switches from the midcourse phase to the terminal one,

the lock-on condition can be defined as

r (t = ts) ≤ rseeker, σ (t = ts) ≤ FOV/2 (2.9)

where ts is switching time of guidance phases and rseeker denotes the seeker’s detection range.

3. OPTIMAL GUIDANCE LAW

In this section, optimal impact angle control guidance laws with the seeker’s lock-on con-

dition are derived minimizing the energy cost function weighted by a power of range-to-go

subject to the terminal constraints. First, a midcourse guidance law is obtained using linear
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FIGURE 1. Engagement Geometry

quadratic optimal control theory. The terminal conditions for the midcourse phase are set as

the desired values to lock on the target under seeker’s physical constraints such as the FOV limit

and the detection range. If the terminal conditions are chosen as the interception with impact

angle constraint, the proposed midcourse guidance law can be used as the terminal guidance

one.

3.1. Midcourse Guidance Law. Let us consider the following cost function weighted a power

of range-to-go:

J =
1

2

∫ rd

r0

a2

(r − rd)
N
dr, N ≥ 0 (3.1)

where N denotes a guidance gain. In case of N = 0, it is to solve a pure energy optimal

guidance problem. Also, in case ofN > 0, during the entire engagement, the control energy are

distributed by the weight function of (r − rd)
−N in Eq. (3.1), so the huge guidance commands

are generated at the initial phase and the acceleration becomes zero at the end of the guidance

phase.

The Hamiltonian H of the guidance problem is

H =
a2

2 (r − rd)
N

− λσ

( a

V 2
+
σ

r

)
− λγ

a

V 2
(3.2)
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where λσ and λγ denote the co-states. Their differential equations with respect to r are given

by

dλσ
dr

= −∂H
∂σ

= λσ
1

r
(3.3)

dλγ
dr

= −∂H
∂γ

= 0 (3.4)

where the terminal conditions of the co-states are λσd
= νσ and λγd = νγ . Integrating Eqs.

(3.3) and (3.4) with the terminal conditions yields

λσ = vσ
r

rd
(3.5)

λγ = vγ (3.6)

Using the optimality condition ∂H/∂r = 0, we have the following optimal acceleration:

a =
νσ
V 2rd

r (r − rd)
N +

νγ
V 2

(r − rd)
N (3.7)

Eq. (3.7) implies that the acceleration commands for N = 0 are linearly generated, and will

not become zero at the end of the guidance phase because of the constant νγ . Also, a (rd) = 0
when N > 0. The range-derivative of Eq. (3.7) is

da

dr
= a′ =

νσ
V 2rd

[(1 +N) r − rd] (r − rd)
N−1 +

νγ
V 2

N (r − rd)
N−1 (3.8)

From Eq. (3.8), if N ≤ 1, then a′ (rd) �= 0. In addition, if N > 1, then a′ (rd) = 0.

Substituting Eq. (3.7) into Eq. (2.6) and then integrating these equations, we have

σ =− νσ
V 4rd

1

r

[
(r − rd)

N+3

N + 3
+ 2rd

(r − rd)
N+2

N + 2
+ r2d

(r − rd)
N+1

N + 1

]

− νγ
V 4

[
(r − rd)

N+2

N + 2
+ rd

(r − rd)
N+1

N + 1

]
+
Cσ

r
(3.9)

γ =− νσ
V 4rd

[
(r − rd)

N+2

N + 2
+ rd

(r − rd)
N+1

N + 1

]
− νγ
V 4

(r − rd)
N+1

N + 1
+ Cγ (3.10)

where Cσ and Cγ are integration constants to be determined from the initial conditions. There-

fore, using the initial conditions of Eq. (2.7), Eqs. (3.9) and (3.10) can be rewritten as

σ =
νσ
V 4rd

1

r
[G (r0)−G (r)] +

νγ
V 4

[H (r0)−H (r)] + σ0
r0
r

(3.11)

γ =
νσ
V 4rd

[P (r0)− P (r)] +
νγ
V 4

[Q (r0)−Q (r)] + γ0 (3.12)
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where

G (r) =
(r − rd)

N+3

N + 3
+ 2rd

(r − rd)
N+2

N + 2
+ r2d

(r − rd)
N+1

N + 1
(3.13)

H (r) =
(r − rd)

N+2

N + 2
+ rd

(r − rd)
N+1

N + 1
(3.14)

P (r) =
(r − rd)

N+2

N + 2
+ rd

(r − rd)
N+1

N + 1
(3.15)

Q (r) =
(r − rd)

N+1

N + 1
(3.16)

Also, from the terminal conditions of Eq. (2.8), we have

νσ = V 4rd
[(γd − γ0)H (r0)− (σdrd − σ0r0)Q (r0)]

[P (r0)H (r0)−Q (r0)G (r0)]
(3.17)

νγ = −V 4 [(γd − γ0)G (r0)− (σdrd − σ0r0)P (r0)]

[P (r0)H (r0)−G (r0)Q (r0)]
(3.18)

Substituting Eqs. (3.17) and (3.18) into Eq. (3.7), the open-loop optimal solution can be

obtained as

a =V 2 [(γd − γ0)H (r0)− (σdrd − σ0r0)Q (r0)]

[P (r0)H (r0)−Q (r0)G (r0)]
r (r − rd)

N

− V 2 [(γd − γ0)G (r0)− (σdrd − σ0r0)P (r0)]

[P (r0)H (r0)−G (r0)Q (r0)]
(r − rd)

N (3.19)

If the initial states in Eq. (3.19) are taken as the current states, the closed-loop optimal solution

is obtained as

a = − V 2

(r − rd)
2 {(N + 2) [(N + 1) r + 2rd] (γd − γ)− (N + 2) (N + 3) (rdσd − rσ)}

(3.20)

The optimal midcourse guidance laws with various guidance gains N are shown in Table 1

TABLE 1. Examples of optimal terminal guidance laws with different N

N Optimal Guidance Laws Notes

0 a = − V 2

(r−rd)
2 [2 (r + 2rd) (γd − γ)− 6 (rdσd − rσ)] a (rd) �= 0

1 a = − V 2

(r−rd)
2 [6 (r + rd) (γd − γ)− 12 (rdσd − rσ)] a (rd) = 0

2 a = − V 2

(r−rd)
2 [4 (3r + 2rd) (γd − γ)− 20 (rdσd − rσ)] a (rd) = a′ (rd) = 0
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3.2. Terminal Guidance Law. The conditions to intercept a stationary target at the final time

tf are

lim
t→tf

r = 0 (3.21)

lim
r→0

σ = 0 (3.22)

By applying the interception conditions of Eqs. (3.21) and (3.22) to Eq. (3.20), we have

a = −V
2

r
[(N + 1) (N + 2) (γd − γ) + (N + 2) (N + 3)σ] (3.23)

Also, setting σ = γ − λ and r ≈ V tgo, where tgo = tf − t, in Eq. (3.23), we have

a = − V

tgo
[− (N + 2) (N + 3)λ+ 2 (N + 2) γ + (N + 1) (N + 2) γf ] (3.24)

Equations (3.23) and (3.24) are optimal impact angle control guidance laws for homing guid-

ance missiles against stationary targets. The optimal terminal guidance laws with various N
are shown in Table 2.

TABLE 2. Examples of optimal terminal guidance laws with different N

N Optimal Terminal Guidance Laws Notes

0 a = −V 2

r [2 (γf − γ) + 6σ] a (0) �= 0

1 a = −V 2

r [6 (γf − γ) + 12σ] a (0) = 0

2 a = −V 2

r [12 (γf − γ) + 20σ] a (0) = a′ (0) = 0

Hence, from the results of Eqs. (3.23) and (3.24), it can be known that the proposed mid-

course guidance law of Eq. (3.20) can be utilized as the terminal guidance one if rd = 0 and

σd = 0 for the final phase are chosen.

3.3. Desired Look Angle and Relative Range Selection for the Midcourse Phase. In the

proposed midcourse guidance law, the desired look angle σd can be selected as an arbitrary

value, but it should take into account the seeker’s FOV limits to lock on the target during the

midcourse phase. Let us define a look angle margin

σmargin = FOV/2− |σ (rd)| (3.25)

From Eq. (3.25), to maximize the look angle margin σmargin, the desired look angle σd should

be set to zero. Although, in aerodynamically controlled missiles, the seeker’s FOV is defined

as an angle between the missile body axis and the LOS (i.e., the sum of the lead angle, defined

in the velocity axis and the LOS, and the AOA), the AOA becomes zero at the instant of

the handover due to zero acceleration when using the proposed midcourse guidance law with

N > 0. This means that the seeker’s FOV is identical to the look angle defined in previous

section. In the vertical plane engagement affected by the gravity, the gravity compensation

term g cos (γ) should be added to the guidance command, so the acceleration at the instant of
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the handover will not become zero. However, the AOA generated by the gravity is small, i.e.,

|a (rd)| ≤ g for N > 0, so we can use the look angle, defined previously, for controlling the

seeker’s FOV limit.

The desired relative range rd is set to the seeker’s detection range because the navigation

errors are increased as the midcourse phase takes long, which require more control energy

to correct the terminal guidance errors. Hence, the desired look angle and relative range are

chosen as

σd = 0 (3.26)

rd = rseeker (3.27)

4. NUMERICAL EXAMPLES

In this section, nonlinear simulations are performed to investigate the performance of the

proposed guidance laws. First, for the entire engagement, using both of the proposed midcourse

and terminal guidance laws, and using the only terminal one are compared in order to check

the importance of the midcourse phase for a missile with a narrow FOV of the seeker. Second,

nonlinear simulations are performed to confirm the characteristics of the proposed guidance

laws when various guidance gains and impact angles are given. Finally, the performance of the

proposed guidance law is described for a realistic missile system having an autopilot lag and

acceleration limit.

4.1. Comparison Study. Nonlinear simulations are performed to investigate the importance

of the midcourse phase for a missile with a limited FOV of the seeker. The initial conditions

for nonlinear simulations are shown in Table 3, and the guidance gain is chosen as N = 0,

which generates pure energy minimization control inputs.

The missile trajectories, lateral acceleration, look angles, and flight path angles are shown

in Figs. 2-5, where the legends MID+TER and TER denote the implementation of both the

proposed midcourse and terminal guidance laws, and the only terminal one, respectively.

FIGURE 2. Missile Trajectories for Comparison Study
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As shown in Fig. 2, the missile trajectories using both the proposed laws are more highly

curved because the missile enters the impact angle plane at shorter relative range than using

the only terminal one.

There is no uncertainty and noise in these simulations, so, in case of MID+TER, the missile

is guided on the collision course, which intercepts the target without any control effort, after the

handover. The acceleration profiles are shown in Fig. 3, they are nearly not generated during

the terminal phase in case of MID+TER because of the collision course.

FIGURE 3. Lateral Acceleration for Comparison Study

However, when using the only terminal guidance law during the entire engagement, the

acceleration is almost linearly generated. As shown Fig. 4, the look angle at the detection

range of rd = 3 km becomes zero for the case of MID+TER. However, in case of TER, the

look angle becomes 19.6 deg, so it is impossible to lock on the target and then may result in

mission failure.

FIGURE 4. Look Angles for Comparison Study
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Figure 5 presents the flight path angles, and the desired impact angles are achieved for both

cases. From these results, to implement the impact angle control for a missile with the seeker’s

FOV limit, the midcourse trajectory will be well designed to lock on the target when the target

is located in the place where the seeker cannot detect it from the initial missile position.

FIGURE 5. Flight Path Angles for Comparison Study

TABLE 3. Initial Conditions for Nonlinear Simulations

Parameters Values

Missile Position, (x0, y0) (0, 0) km

Target Position, (xf , yf ) (10, 0) km

Missile Speed, V 250 m/s

Launch Angle, γ0 = σ0 30 deg

Seeker’s FOV ±15 deg (or 30 deg)
Seeker’s Detection Range, rseeker = rd 3 km

Impact Angle, γd = γf -90 deg ˜0 deg

4.2. Characteristics of an Optimal Guidance Law. To investigate basic properties of the

proposed guidance law, nonlinear simulations for various guidance gains, when the impact

angle is fixed, are performed. In addition, nonlinear simulations for various impact angles,

when the guidance gain is fixed, are carried out. The simulations are terminated at the instant

of the seeker’s lock-on because the missile flights on the collision course after the handover,

which will form the same flight path during the terminal phase.
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4.2.1. Case 1: Various Guidance Gains N. The simulation results for the case of various guid-

ance gains are shown in Figs. 6-9 and Table 4. As shown in Fig. 6, higher guidance gains are

chosen, more the missile trajectories are highly curved.

FIGURE 6. Missile Trajectories for Various Guidance Gains

From Fig. 7, by the weighting function, the largest guidance commands are generated for

N = 2, and the acceleration becomes zero at the end of the midcourse phase except forN = 0.

FIGURE 7. Lateral Acceleration for Various Guidance Gains

As shown in Fig. 8, in all cases, the look angles converge on zero, so the seeker could lock

on the target at the detection range. However, in case of N = 0, since the AOA is not zero

at the detection range due to non-zero acceleration, the look angle in a realistic missile system

could not become zero. Hence, the proposed midcourse guidance law with N > 0 is more

practical to ensure the maximum look angle margin. Figure 9 shows that the desired impact

angle constraints are satisfied for all cases.

From the control energy result shown in Table 4, the smallest energy is consumed in N = 0,

which generates a pure energy minimization control inputs, and the largest energy is required
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FIGURE 8. Look Angles for

Various Guidance Gains.

FIGURE 9. Flight Path

Angles for Various Guid-

ance Gains.

in N = 2. Therefore, to perform next nonlinear simulations for various impact angles, we

choose N = 1 as a proper guidance gain, which satisfies zero acceleration at the detection

range and does not generate large guidance commands.

TABLE 4. Comparison of Control Energy

OGL with N = 0 OGL with N = 1 OGL with N = 2

J = 1
2

∫ tf
t a2dt, m2/s3 4852.9 10525.4 23762.4

4.2.2. Case 2: Various Impact Angles. Nonlinear simulations for γd =0 deg, -30 deg, -60 deg,

and -90 deg are performed, and their results are presented in Figs. 10-13. From Fig. 10, as

high impact angles are chosen, the missile trajectories are highly shaped.

FIGURE 10. Missile Trajectories for Various Impact Angles
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As shown in Fig. 11, the largest guidance commands are generated in the beginning of the

engagement, and the acceleration becomes zero at the end of the midcourse phase in all cases.

As shown in Fig. 12, the look angles converge on zero near the final time.

FIGURE 11. Lateral Accel-

eration for Various Impact

Angles

FIGURE 12. Look An-

gles for Various Impact

Angles

Also, Fig. 13 presents that the flight path angles satisfy the desired impact angles, respec-

tively.

FIGURE 13. Flight Path Angles for Various Impact Angles

4.3. First-Order Autopilot Lag with Acceleration Limit. A realistic missile system has an

autopilot lag and acceleration limit, which causes the terminal miss-distance and impact angle

errors. Therefore, through nonlinear simulations, the robustness of the proposed guidance

law is checked with respect to these nonlinearities. The autopilot system is modeled as the

following first-order one:
a

ac
=

1

sτ + 1
(4.1)
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where ac is the control input and τ is the first-order time constant. We choose the first-order

time constant as τ = 0.3 s and the maximum acceleration limit as |ac| ≤ 50 m/s2. Also,

impact angles are set to γd =-45 deg, -60 deg, and -75 deg, and the guidance gain is set to

N = 1. Since the guidance commands for the midcourse phase can generate infinite values

near the desired relative range due to the system lag and uncertainty in the real engagement

environment of the missile, the relative range is used as a fixed value when r < (rd + 30) m

and then terminal guidance commands are calculated using the current relative range after the

handover.

Nonlinear simulation results with the first-order autopilot lag are presented in Figs. 14-17.

Figures 14 and 15 show the interception trajectories and missile acceleration, respectively.

FIGURE 14. Missile Trajec-

tories for First-Order Au-

topilot Lag

FIGURE 15. Lateral Ac-

celeration for First-Order

Autopilot Lag

Also, Figs. 16 and 17 present the look angles and the flight path angles, respectively. From

these figures, it can be known that the proposed laws successfully impact the target with the

desired terminal angle after locking on the target under the realistic missile environment.

5. CONCLUSIONS

This paper has presented an optimal guidance law with impact angle constraint considering

the seeker’s lock-on condition. The proposed guidance law can be utilized in both of the

midcourse and terminal phases by changing the desired look angle and relative range values

to the final interception conditions. During the midcourse phase, to maximize the look angle

margin and homing time, the desired look angle and relative range are set to zero and the

detection range of the seeker, respectively. The performance of the proposed guidance law is

investigated via nonlinear simulations for various engagement conditions.
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