Browse > Article
http://dx.doi.org/10.5139/IJASS.2012.13.2.154

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions  

Hawkins, Matt (Iowa State University)
Guo, Yanning (Iowa State University)
Wie, Bong (Iowa State University)
Publication Information
International Journal of Aeronautical and Space Sciences / v.13, no.2, 2012 , pp. 154-169 More about this Journal
Abstract
This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.
Keywords
asteroid intercept; asteroid rendezvous; terminal-phase guidance; optimal guidance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Acikmese, B., and Ploen, S. R., "Convex Programming Approach to Powered Descent Guidance for Mars Landing", Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353-1366. DOI: 10.2514/1.27553   DOI   ScienceOn
2 Bryson, A. E., and Ho, Y.-C., Applied Optimal Control: Optimization, Estimation, and Control, Wiley, New York, 1975.
3 Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, Reston, VA, 1987.
4 D'Souza, C. N., "An Optimal Guidance Law for Planetary Landing", AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997.
5 Guo, Y., Hawkins, M., and Wie, B., "Optimal Feedback Guidance Algorithms for Planetary Landing and Asteroid Intercept", AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, 2011.
6 Hawkins, M., Guo, Y., and Wie, B., "Guidance Algorithms for Asteroid Intercept Missions with Precision Targeting Requirements", AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, 2011.
7 Ebrahimi, B., Bahrami, M., and Roshanian, J., "Optimal Sliding-mode Guidance with Terminal Velocity Constraint for Fixed-interval Propulsive Maneuvers", Acta Astronautica, Vol. 62, No. 10-11, 2008, pp.556-562. DOI: 10.1016/j.actaastro.2008.02.002   DOI   ScienceOn
8 Furfaro, R., Selnick, S., Cupples, M. L., and Cribb, M., W., "Non-linear Sliding Guidance Algorithms for Precision Lunar Landing", AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, 2011.
9 Guo, Y., Hawkins, M., and Wie, B., "Waypoint-Optimized Zero-Effort-Miss / Zero-Effort-Velocity Feedback Guidance For Mars Landing", AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, 2012. Submitted to Journal of Guidance, Control and Dynamics.
10 Guo, Y., Hawkins, M., and Wie, B., "Applications of Generalized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm", AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, 2012. Journal of Guidance, Control and Dynamics.
11 M. Hawkins, A. Pitz, B. Wie, and J. Gil-Fernández, "Terminal-Phase Guidance and Control Analysis of Asteroid Interceptors", AIAA Guidance, Control, and Navigation Conference, Toronto, Canada, August 2-5, 2010.
12 Kim, M. and Grider, K. V., "Terminal Guidance for Impact Attitude Angle Constraint Flight Trajectories", IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-9, No. 6, 1973, pp. 269-278. DOI: DOI: 10.1109/TAES.1973.309659
13 Shaferman, V., and Shima, T., "Linear Quadratic Guidance Laws for Imposing a Terminal Intercept Angle", Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1400-1412. DOI: 10.2514/1.32836   DOI   ScienceOn
14 Kim, B. S., Lee, J. G., and Han, H. S., "Biased PNG Law for Impact with Angular Constraint", IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, 1998, pp. 277-288.   DOI   ScienceOn
15 Ryoo, C. K., Cho, H. J., and Tahk, M. J., "Optimal Guidance Laws with Terminal Impact Angle Constraint", Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 724-732. DOI: 10.2514/1.8392   DOI   ScienceOn
16 Lu, P., Doman, D. B., and Schierman, J. D., "Adaptive Terminal Guidance for Hypervelocity Impact in Specified Direction", Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 724-732. DOI: 10.2514/1.14367
17 Ratnoo, A., and Ghose, D., "Impact Angle Constrained Guidance Against Nonstationary Nonmaneuvering Targets", Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, pp. 269-275. DOI: 10.2514/1.45026   DOI   ScienceOn
18 Yoon, M. G., "Relative Circular Navigation Guidance for Three-Dimensional Impact Angle Control Problem", Journal of Aerospace Engineering, Vol. 33, No. 4, 2010, pp. 300-308. DOI: 10.1061/(ASCE)AS.1943-5525.0000043
19 Shima, T., "Intercept-Angle Guidance", Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp. 484-492. DOI: 10.2514/1.51026   DOI   ScienceOn
20 Zarchan, P., Tactical and Strategic Missile Guidance, 5th Ed., Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 2007.
21 Wie, B., Space Vehicle Dynamics and Control, 2nd Ed., AIAA, Reston, VA, 2008.
22 Vallado, D., Fundamentals of Astrodynamics and Applications, 3rd Ed., Microcosm Press, Hawthorne, CA, 2007.
23 Gil-Fernandez, J., Cadenas-Gorgojo, R., Prieto-Llanos, T., and Graziano, M., "Autonomous GNC Algorithms for Rendezvous Missions to Near-Earth-Objects", AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, 2008.
24 Gil-Fernández, J., Panzeca, R., and Corral, C., "Impacting Small Near Earth Objects", Advances in Space Research, Vol. 42, No. 8, 2008, pp. 1352-1363. DOI: 10.1016/j.asr.2008.02.023   DOI   ScienceOn