• Title/Summary/Keyword: terminal voltages

Search Result 80, Processing Time 0.027 seconds

A study on how to discriminate the polarities of stator windings for 3 phase induction motors by using induced voltages based on residual magnetism (잔류자기 유도 기전력을 이용한 3상유도전동기 권선의 극성 판별법에 관한 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1146-1149
    • /
    • 2014
  • To discriminate polarities of stator windings for 3 phase induction motors terminal tags of which are not readable, it is possible to utilize the residual magnetic flux present at their rotors as well as to use the way based on external exciting current. The induced voltages are basically decided by parameters such as the quantity of residual flux, the rotator speed by hand force and the phase properties between stator windings. To adopt induced voltages by residual flux for polarity discrimination at sites, the measured voltages by multi-testers need to be readable in magnitude enough to discriminate winding condition with reasonable phase characteristics. This study focuses on the analysis of various connection cases in the expectation that the summing voltages induced by residual flux shall show zero in case of normal connections while the sum becomes greater indication if the connection is in wrong condition. The proposed method is applied to actual motors to disclose how effective it is for polarity discrimination at sites through comparison of output signals between normal and fault connections.

Dynamic Behavior Analysis of Pole Transformer Primary by Secondary Surge (저압측 서지에 의한 주상변압기 고압권선 동특성 해석)

  • Jung, Jong-Wook;Song, Il-Keun;Kim, Sang-Joon;Jang, Duck-Geun;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1745-1747
    • /
    • 2002
  • This paper describes the effect of secondary surges entering low voltage side on the primary winding of pole transformers. After having connected the secondary winding by 4 different methods, surge voltages were applied to the low voltage side, and voltage waveforms were measured at a surge applied point and a high voltage bushing terminal. The measured voltages were compared by the waveform, magnitude and damping characteristics with each connection. As a result, the voltage waveforms induced by the secondary surges were different one another with each connection, especially, the conventional connecting method for 2 voltage sources was far different from the present method supplying only 1 voltage source in shape of the voltage waveform.

  • PDF

Controlling Zero Sequence Component in DVR for Compensating Unbalanced Voltage Dip of a DFIG

  • Ko, JiHan;Thinh, Quach Ngoc;Kim, SeongHuyn;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.154-155
    • /
    • 2012
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generator based on doubly-fed induction generator (DFIG) operated under the unbalanced voltage dip conditions. The compensating voltages of DVR depend on the voltage dips and on the influence of the zero sequence components. If the $Y_0/{\Delta}$ step-up transformers are used, there are no zero sequence components on the DFIG side. However, if the $Y_0/Y_0$ step-up transformers are used, the zero sequence components will appear during faults. The zero sequence components result in the high insulation costs and the asymmetric of the terminal voltages. This paper proposes a method for controlling zero sequence components in DVR to protect DFIG under unbalanced voltage dips. Simulation results are presented to verify the effectiveness of the proposed control method.

  • PDF

A Study on the Speed Calculation and Speed Control Based on the Induction Motor Terminal Quantities (유도 전동기 단자전압 전류에 의한 속도계산 및 속도제어에 관한 연구)

  • 박민호;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.445-451
    • /
    • 1986
  • The speed control system of induction motor without speed sensor is proposed in this paper. The speed of induction motor is calculated by motor terminal voltages and currents. The equations for speed calculation are derived and they are implemented on 16bit micro-processor Mc68000. The software and hardware for the Mc 68000 is developed. To prove the validity of the proposed method, the calculated speed is compared with the measured speed. The maximum speed error is nearly 1% in the overall range. The proposed speed calculation method is applied to the Current Source Inverter(CSI) fed induction motor drive system. The experimental results show the good dynamics and the resonable speed control accuracy.

  • PDF

The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor (브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

Adaline-Based Control of Capacitor Supported DVR for Distribution System

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.386-395
    • /
    • 2009
  • In this paper, a new control algorithm for the dynamic voltage restorer (DVR) is proposed to regulate the load terminal voltage during various power quality problems that include sag, swell, harmonics and unbalance in the voltage at the point of common coupling (PCC). The proposed control strategy is an Adaline (Adaptive linear element) Artificial Neural Network (ANN) and is used to control a capacitor supported DVR for power quality improvement. A capacitor supported DVR does not need any active power during steady state because the voltage injected is in quadrature with the feeder current. The control of the DVR is implemented through derived reference load terminal voltages. The proposed control strategy is validated through extensive simulation studies using the MATLAB software with its Simulink and SimPower System (SPS) toolboxes. The DVR is found suitable to support its dc bus voltage through the control under various disturbances.

A New One Terminal Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation (적응 자동 재폐로 및 고장거리 산정을 위한 새로운 1단자 알고리즘)

  • Zoran Radojevic;Joong-Rin Shin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.438-445
    • /
    • 2004
  • This paper presents a new numerical spectral domain algorithm devoted to blocking unsuccessful automatic reclosing onto permanent faults and fault distance calculation. Arc voltage amplitude and fault distance are calculated from the fundamental and third harmonics of the terminal voltages and currents phasors. From the calculated arc voltage amplitude it can be concluded if the fault is transient arcing fault or permanent arcless fault. If the fault is permanent automatic reclosure should be blocked. The algorithm can be applied for adaptive autoreclosure, distance protection, and fault location. The results of algorithm testing through computer simulation and real field record are given.

A Speed Control of Sensorless Induction Motor using Direct Torque Control (직접 토오크 제어를 이용한 센스리스 유도전동기의 속도제어)

  • 박건우;고태언;하홍곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). The drive is based on Mode1 Reference Adaptive System (MRAS) using state observer as a reference model fat flux estimation. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAS) with rotor flux linkages for the speed turning aignal at low speed range, two hysteresis controllers. The Proposed system is verified through simulation.

  • PDF

무효전력 최적제어에 의한 전력손실의 최소화

  • Lee, Hyeong-Gwan
    • ETRI Journal
    • /
    • v.6 no.4
    • /
    • pp.31-36
    • /
    • 1984
  • This paper presents an efficient method for real power loss minimization and for improvements in voltage profiles. This method is accomplished by optimal control of reactive power in the system. The problem is formulated as an optimization problem, suitable for solution by linear programming technique. After establishing the objective function for minimizing the system losses with the help of linearised sensitivity relationships of control variables, i. e., the transformer tap position, generator terminal voltages and switchable reactive power sources. The linear programming technique is used to determine the optimal adjustments to the above variables, simultaneously satisfying the constraints. The proposed algorithm has been tested on a sample system and the result is presented and discussed.

  • PDF

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau, A.;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The paper deals with the control of the synchronous reluctance machine without position senser. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.