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ABSTRACT

The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the
computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals
allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where
especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole
operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a

rotor-oriented control scheme and practical results are demonstrated.
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1. Introduction

It is well known that the synchronous reluctance

machine is an alternative to permanent magnet
synchronous and induction machines. Compared with
permanent magnet synchronous machines it has lower
costs and can function at very high speed because of the
easier field weakening capability and the rugged rotor. If
compared to asynchronous machines it has theoretically
no rotor losses and a comparable torque density depending
on the design of the machine.

On the other hand, the complexity of the dynamic
equations of the synchronous reluctance machine is
increased due to the different magnetic characteristics in
the axis d and q. As a result, the control of synchronous
reluctance machines faces some special problems different
to other AC machines.

The vector control of the synchronous reluctance machine
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leads to structures where the saturable inductances L4 and
L, are of central interest. Particularly in sensorless control
schemes the model of the machine and its parameters
should describe the system as good as possible. In the case
of the synchronous reluctance machine the obvious
sensorless control method is to evaluate the magnetic
unbalance of the rotor. The presented method is confirmed
by experiment. For the experimental work a commercial
available machine was used.

2. Mathematical Model

The synchronous reluctance machine can be described
by the following well known set of equations in the d-q-
reference frame:
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The iron saturation can be easily considered by
assuming the inductances dependent on the currents. Since
the cross coupling is taken into account each inductance is

dependent both on ig and iy

Va=Lg(igig)ia

o 4)
Vg =Ly(ia,iq) iy
Hence by using the derivation rules (1) becomes:
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Equation (5) and (6) can be interpreted as follows:
The inductances Ly and L, determine in steady-state
operation the mean value of the induced voltage and the
torque. The transient inductances Lg and L affect the
changes of current and flux and an additional term
dependent on the grade of cross coupling creates a
transient disturbance voltage.

Fig. 1 shows the measured machine parameters. The

inductances are the result of a current decay test f,
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Fig. 1. Stationary inductances Ly, Ly and transient inductances

Ly Lo measured with a current decay test.

3. Estimation of the Transformation Angle

Aim of the presented sensorless control scheme is to
calculate the transformation angle out of the terminal
voltages and currents. The basic requirement for this kind
of doing is an accurate machine model, provided with the
measurements in [1]. The estimation of the rotor position
angle y will be carried out by using the developed non-
linear and deterministic model and a test signal in the

lower speed range.
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Equation (5) can be expressed in terms of the measured
currents and voltages (U, V):

ag -sin (v, )+ by -cos(v,)=0
ag-sin(y,)+b, -cos(y,)=0 7
where, a4, a4, bg and b, are the coefficients according to (8)
and v, is the rotor position angle to be estimated.

The currents in the terms i-0Ly/0iq and i,-0L/0iq4 are not
converted to UVW-coordinates because otherwise the
equations cannot be solved for ye. For the machine
parameters Ly, Ly, Lai, Lot the respective values calculated
with the currents i4, ig of the previous control interval are
used.

After the calculation of the coefficients ay, by, a; and bg
out of the model parameters of the previous control
interval and the voltages uy, uy and currents iy, iy of the

actual control interval (7) can be solved for v,:

by
—atan| —L for az,20
ad’q
Tel = b
d,
—atan 1 l+n for ag 4 <0 )
adaq
Ye2 =Yel TT

Equation (7) has two possible solutions y.; and y.. In
the case of the synchronous reluctance machine both
solutions are valid because the synchronous reluctance
machine has no rotor winding or permanent magnets.
However it must be ensured that the estimation algorithm
uses only one of these two solutions. A displacement of y,
by 180 degrees would cause a sign reversal of voltages
and currents.

The meaning of the coefficients ad, ag, by and by can be
illustrated by applying the transformation rules once again

to (8). This leads to the more transparent relationships:

ag=cq -cos(y,)
by =—c¢, -sin(y,)

ag=—cq-cos(y.)
by=cy -sin( e)

(10)

with

] i oLy . OLg ) dig
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(11)

For a good quality of angle estimation the coefficients
cq and ¢q must be significant greater than zero. The first
term in ¢4 and ¢, represents the induced EMF and can be
used for angle estimation at higher speed. At standstill the
angle can be estimated using the second term. In this case
di/dt can be increased by injecting a superimposed
alternating voltage. The third term is caused by cross
saturation effects. It will be shown that the consideration
of this term increases the accuracy of the estimation.

Fig. 2 shows the charts of ¢4 and ¢4 when there is no
superimposed voltage. These considerations are necessary
to select the regions where the angle is calculated out of ad,
by or out of ag, by. It can be seen that at no-load the angle
must be estimated using ad and by because ¢, is zero. At
high load and high speed the estimation of . using a, and
by is expected to give the better results because cq is

greater than cy.

CANA
A0 O 1000

Fig. 2. Magnitude of ¢4 and ¢, without superimposed voltage.
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Fig. 3. Magnitude of ¢4 and ¢4 with superimposed voltage in base
speed range.

3.1 Angle Estimation at Slow Speed

At zero speed and di/dt=0 both cd and ¢, in Fig. 2
become zero. According to (11) ¢4 becomes #0 at ®=0
when creating a diy/dt and ¢, becomes #0 at ®=0 when
creating a dig/dt. This can be achieved by injecting a
rectangular voltage +Au in the required axis. The period of
the superimposed voltage is selected to be 600us. The
currents are measured at the beginning of each control
interval of 150us, so di/dt is calculated out of the
difference between current measurements of a 300us-
interval. The amplitude of the superimposed voltage is set
to Au=£200V.

Using (5) dig/dt and di/dt can be expressed as functions
of Au. Fig. 3 shows the resulting characteristics cd and cq
with a superimposed voltage Au in the d- or g-axis.
Because Ly is greater than L the magnitude of diy/dt and
cq is smaller than the magnitude of diy/dt and c4. Also ¢4
becomes zero at certain values i;<0. Therefore the angle
should be estimated using ag4, by with injection of Au in the
g-axis. An additional problem is the magnitude of c4 at
i;=0. The reason is that the difference Ly-Lqg in (11) at the
currents iz=10A and i;=0 is nearly zero. The entire
dependence of ¢4 on ig and i, at standstill is shown in Fig.

4. Because Ly, increases as id decreases the current id

Fig. 4. Magnitude of ¢4 as a function of ig4, iy at standstill and

with superimposed voltage Au=-200V.

0 1000 2000 3000 4000 5000 6000
n (min™"

Fig. 5. Regions where the angle y is calculated out of a4, by or a,,
bg.

must be decreased at small values of iq in order to get a
value of ¢4 significantly greater than zero, see Fig. 6.

3.2 Estimation Strategy

The aim of the following considerations is to obtain a
magnitude of ¢, or ¢4 as high as possible in each operation
point. For this purpose the n-ig-plane is divided into 4
sections, see Fig. 5. The resulting magnitudes of ¢4 and cg
are shown in Fig. 8.

1) In the range of -1000min'<n<1000min” a
rectangular voltage of +200V is injected in the g-axis. At
speed higher than 1000min™
would reach the voltage limit of the inverter. The selected

the superimposed voltage

reduction strategy of iy in this region shows Fig. 6.

2)-4) For speed above 1000min” the method which
results in the highest amplitude of ¢4 or ¢q is selected.

In this way the magnitudes of ¢, and ¢, are never equal
to zero, see Fig. 8. Additionally to the considerations
above it must be selected among the two possible

solutions ¥y, and y.; in (9):

Ve = (12)

Yer for c¢y>0,

Yer for cy<0, —c4<0
—cy>0



Sensorless Control of the Synchronous Reluctance Machine 99

Fig. 6. Complete ig-characteristic with reduction of iy when
applying an additional voltage at slow speed.

Fig. 7. Magnitude of ¢, and c, with linear reduction of i4=f(i,) in
base speed range like it is shown Fig. 6.

3.3 Speed and position observer

Using the described method the rotor angle can be
estimated with sufficient accuracy. Still there are problems
at dynamic variations of the currents. In this case the
stationary characteristics of ¢4 and ¢q shown in Fig. 8 are
not valid because of the term di/dt in (11), and therefore
some estimated values ye become incorrect at small values
of ¢4 or cq. It is also impossible to get a speed value with
sufficient accuracy by derivation of the estimated angle
due to the noise in this signal. The described problems can
be solved by using an observer for the mechanical
subsystem of the machine.

SIS AN
4000 O 1000

et
AN O A0

Fig. 8. Resulting magnitudes of ¢4 and c,.

The general form of a state-space model is:

ﬂ%t’;):A.x(t)JrB-u(t)vLE'Z(t) (13)
y(t)=C-X(l‘)+D'“(t)

By applying the equations of the mechanical subsystem
of the machine to (13) the state-space model becomes:

A o g
oo o2

+0-M,(z)

(14)

The disturbance variable M is unknown. Still it is
possible to consider the disturbance variable if the time
characteristic of the disturbance is basically known. Here
the load torque is assumed to be constant. Therefore the
disturbance model is:

d

—M ;=0 15

ML (15)
The observer structure can be derived out of (14) and

(15) in a formal way (see Fig. 9 (a)). The dynamic of the

observer is given by the feedback coefficients 1; and 1,.
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Fig. 9. Structure of the observer with: a) P- and b) Pl-feedback.

In the case of ML+MLO; ’ the difference between
reality and model is compensated by the feedback variable
r; in Fig. 9 (a). As a consequence there is a stationary error
in y;A and o; ’ dependent on My, |, and 1. The stationary
error in ®; " can be eliminated by using the signal d'y;A/dt

as speed variable, but then the noise of the estimated angle

These disadvantages are eliminated by using the
observer structure in Fig. 9 (b). With the integrator in the

feedback loop the stationary error of y;A and ;

becomes zero.

4. Experimental resulits

The control scheme has been realized in the laboratory.
The simplified control scheme is shown in Fig. 10, see
also [2]. The DC link voltage of the inverter is controlled
to a fix value of 670V. The inverter uses a space vector
PWM, the switching frequency is 3,3kHz and the
6,6kHz. The
characteristics are implemented by using polynomials with
an order of 6 (L4(ig)) and 9 (Lg(ig)) and with a linear
dependence L4(iq) and Lq(iq).

First the machine is operated with an angular sensor for

sampling frequency is inductance

the control. In Fig. 11 and Fig. 12 the simulated and
measured transient error of the estimated angle y. is
examined by the example of a positive and negative step
of ig. The resulting magnitude |c| is calculated out of the
actually used coefficients a and b according to:

2 2
. . . cl=va“+b 16
v. deteriorates the quality of the estimated speed. | | (16)
—e K T,
PN
iy e g »—H—<
iy characteristic iy controller tAu, O . § =
Ke Tnom, . —Kp Ty T t ZEaN 3 ol 3~
imax
»* N =1 lq uq uqmax T
—’? —~ = Y
- ® controller e i, controller [ [X]=—
[ L
Ldl th é* X
Iy 7 2 /I —0)
iy - 9
3] 9
Ep - hmduitap(i.e | T
_TL L, | characteristics /M\
q -
/
L { X & i N 3~
Y
1 =
[ X }— J v J
& ] oserver [ e enele 13—

Fig. 10. Control scheme of the synchronous reluctance machine.
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Fig. 11. Simulated positive and negative
step responses of ig at n=2000min"".

In Fig. 11 there are also shown the magnitudes cd;”

and cq; calculated out of the control variables according
to (11). At the positive step of ig here ¢4 becomes negative
because of the high value of dig/dt in (11). Because cd is
assumed to be positive in this operating point (see Fig. 8),
the estimated angle is not corrected according to (12) and
so there is a temporary change in . by 180°. At a negative
step of iq this problem does not arise because cd remains
positive.

A step of the transformation angle by 180° is not
tolerable. Even when using the observer a noisy input

value y. would reduce the quality of the observed

Fig. 12. Measured positive and negative
step responses of iy at n=2000min™",

Fig. 14. Measured control variables
during speed reversal with a load inertia
of 11-107 kgm?.

transformation angle y;A. So this problem has been solved
by an additional plausibility check and correction of the
estimated angle ye by 180° with y;A as comparison value.

Now the measured angle y and the estimated angle v, are
compared in steady-state operation in order to verify the
estimation algorithm. The average difference (v-y.) at
n=20min"" and n=2000min™' shows Fig. 13. Normally the
error is less than 2 degrees, only at i;=0 and with
superimposed voltage (n=20min’") the error increases. The
dotted curves in Fig. 13 show the error when the di/dt- or
the cross saturation-term in (8) is neglected.

Thus it is proved that consideration of the cross saturation
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increases the estimation accuracy.

In the next step the machine is controiled according to
Fig. 10 using the observed variables y;A " Fig. 14
shows a speed reversal from ~-6000 to +6000min-1 and the

and w;

errors of the observed speed and position.
In Fig. 15 up to Fig. 20 some measured waveforms in

different operating points are given. The greatest error y-

y; is at no load and with superimposed voltage. | At
n=2000min-1 and i;=10A the calculation of y, switches
between using ad, by and using aq, b,.

5. Conclusion

This paper presents a sensorless control scheme for the
synchronous reluctance machine. The calculation method
uses one measured value of the currents per control cycle,
so additional measurements are not necessary. Using the
presented model of the machine, the transformation angle
can be estimated out of the terminal voltages and currents
over the whole speed and load range by means of a non-
linear deterministic model. This investigation is a basic
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machine in speed-controlled low-cost electrical drives.

6. Nomenclature

d, q: direct and quadrature axis

U, V, W: stator phases

A observed values *:  reference values
u:  voltage ir current

v: flux linkage Rs:  stator resistance

L4, Lq:  stationary inductances

La, Ly  transient inductances

o: angular frequency n: rotational speed
p: number of the pairs of poles

M;:  air-gap torque My: load torque

J: inertia v: rotor angle

Y.: estimated rotor angle

a, b: coefficients for angle estimation

¢: magnitude of a and b

Augy, Aug:  amplitude of the test signal at low speed

Machine data

ABB servomotors, type 2ES.7

rated torque M,=27 Nm

rated current [=14,6 A

number of poles p=4

rotor inertia J=7,041-10% kgm®

stator resistance Rs=0,34 Q2
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