• Title/Summary/Keyword: terahertz time-domain spectroscopy

Search Result 60, Processing Time 0.022 seconds

Terahertz Time-Domain Spectroscopy and Imaging using Compact Fiber-coupled Terahertz Modules (초소형의 광섬유 결합형 테라헤르츠 모듈을 이용한 시간영역에서의 분광 및 이미징)

  • Yoon, Young-Jong;Kim, Namje;Ryu, Han-Cheol;Moon, Kiwon;Shin, Jun-Hwan;Han, Sang-Pil;Park, Kyung Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.72-77
    • /
    • 2014
  • We have demonstrated a terahertz (THz) time-domain spectroscopy and imaging system using compact fiber-coupled THz modules. Using this THz spectroscopy system we have measured the absorption spectrum of water vapor in free space over 3 THz, as well as the refractive indices of various substrates such as Si, $Al_2O_3$, and GaAs using the transfer-function method. Through the THz imaging system we have observed a high-quality THz image of a medical knife and metal clip sample, with a resolution of $192{\times}89$ pixels using a step size of 250 ${\mu}m$.

Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials (FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용)

  • Im, Kwang-Hee;Hsu, David K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

Polymorphic Forms of Furosemide Characterized by THz Time Domain Spectroscopy

  • Ge, Min;Liu, Guifeng;Ma, Shihua;Wang, Wenfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2265-2268
    • /
    • 2009
  • Terahertz time domain spectroscopy (THz-TDS) is applied in transmission to identify the five forms of modifications of furosemide and one commercial product from 0.3 THz to 1.6 THz at room temperature. The different absorption spectra of the different forms are sensitive to crystal structures. Density function theory (DFT) calculation was used to understand the vibrational modes of furosemide in the THz region. X-ray powder diffractometry (XRPD) was applied to confirm the different forms of modifications. The results demonstrate that THz-TDS is a potential analytical technique in investigating polymorphic forms in the pharmaceutical fields.

Terahertz Frequency Spreading Filter via One-dimensional Dielectric Multilayer Structures

  • Yi, Min-Woo;Kim, Young-Chan;Yee, Dae-Su;Ahn, Jae-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.398-402
    • /
    • 2009
  • We present a method of using one-dimensional dielectric multilayer structures for designing terahertz frequency spreading filters. The interference of terahertz pulses in these structures composed of alternating weak and strong refractive materials allows design of well-separated THz frequency components within a modulation-limited THz spectral envelope. The design characteristics of these coarse THz combs are limited by the saturation effect and also by the deformation of the THz pulse time-traveling within the structure. The details of the designed THz waveform synthesis from these THz multilayer spectral filters are verified by experiments using time-domain terahertz pulsed spectroscopy.

Guided Wave THz Spectroscopy of Explosive Materials

  • Yoo, Byung-Hwa;Kang, Seung-Beom;Kwak, Min-Hwan;Kim, Sung-Il;Kim, Tae-Yong;Ryu, Han-Cheol;Jun, Dong-Suk;Paek, Mun-Cheol;Kang, Kwang-Yong;Chung, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • One of the important applications of THz time-domain spectroscopy (TDS) is the detection of explosive materials through identification of vibrational fingerprint spectra. Most recent THz spectroscopic measurements have been made using pellet samples, where disorder effects contribute to line broadening, which results in the merging of individual resonances into relatively broad absorption features. To address this issue, we used the technique of parallel plate waveguide (PPWG) THz-TDS to achieve sensitive characterization of three explosive materials: TNT, RDX, and HMX. The measurement method for PPWG THz-TDS used well-established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. All materials were characterized as powder layers in 112 ${\mu}m$ gaps in metal PPWG. To illustrate the PPWG THz-TDS method, we described our measurement by comparing the vibrational spectra of the materials, TNT, RDX, and HMX, applied as thin powder layers to a PPWG, or in conventional sample cell form, where all materials were placed in Teflon sample cells. The thin layer mass was estimated to be about 700 ${\mu}g$, whereas the mass in the sample cell was ~100 mg. In a laboratory environment, the absorption coefficient of an explosive material is essentially based on the mass of the material, which is given as: ${\alpha}({\omega})=[ln(I_R({\omega})/I_S({\omega}))]m$. In this paper, we show spectra of 3 different explosives from 0.2 to 2.4 THz measured using the PPWG THz-TDS.

Analysis of Defect Signals Inside Glass Fiber Reinforced Polymer Through Deconvolution of Terahertz Wave (테라헤르츠파의 디컨벌루션을 통한 유리섬유 복합재 내부 결함 신호 분석)

  • Kim, Heon-Su;Park, Dong-Woon;Kim, Sang-Il;Lee, Jong-Min;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.8-12
    • /
    • 2022
  • Analysis of defect signals inside glass fiber reinforced polymer (GFRP) was conducted through deconvolution of terahertz (THz) wave. The GFRP specimen with internal defects was manufactured and the THz signal was measured through the reflection mode of the Terahertz Time-Domain Spectroscopy (THz-TDS) system. For deconvolution of the measured THz signal, the peak position of the THz signal was amplified through Normalized Cross Correlation (NCC) of the incident and detected THz signals. The position and intensity of the amplified peak were extracted as impulse, and the extracted signal of the impulse position was removed from the THz original signal. By repeating the process, the critical impulses, which represent boundary of the specimen, were derived. The deconvolution process was verified by confirming that the original THz signal without noise can be restored through the convolution of the critical impulses and the incident signal. From the derived critical impulses, the thickness of the internal defect in the GFRP was calculated through the detection time of impulses within 15 ㎛ accuracy.

Broadband and Polarization Independent Terahertz Metamaterial Filters Using Metal-Dielectric-Metal Complementary Ring Structure

  • Qi, Limei
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.263-268
    • /
    • 2016
  • Broadband metal-dielectric-metal terahertz filters composed of complementary rings are designed and demonstrated. Four samples with different parameters were fabricated. Results measured using THz time-domain spectroscopy system show excellent agreement with simulations. Compared with the broadband filters reported before, the complementary ring structure in our design is insensitive to any polarization at normal incidence due to symmetry of the ring. Furthermore, the influence of structure parameters (such as period, radius, slot width, thickness and incidence angles) on the transmission characteristics has been investigated theoretically. The encouraging results afforded by designing of the filters could find applications in broadband sensors, terahertz communication systems, and other emerging terahertz technologies.

Terahertz Wave Transmission Properties of Metallic Periodic Structures Printed on a Photo-paper

  • Lee, Sung-Ho;Gee, Sang-Yoon;Kang, Chul;Kee, Chul-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.282-285
    • /
    • 2010
  • We printed a one-dimensional array of metallic wires and a two-dimensional array of metallic split ring resonators on a photo-paper by using a high-dots-per-inch resolution printer and an ink with silver nano-particles. The printed sample sizes are $1.0{\times}1.0cm^2$. The transmission measured by a terahertz time domain spectroscopy system shows that the arrays of wires and split ring resonators could act as polarizers and band-stop filters, respectively, in a terahertz frequency region.

Broad Dual-band Metamaterial Filter with Sharp Out-of-band Rejections

  • Qi, Limei;Shah, Syed Mohsin Ali
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.629-634
    • /
    • 2018
  • A broad dual-band terahertz metamaterial filter with sharp out-of-band rejections is designed and demonstrated. The center frequencies of the first and the second bands occur at 0.35 THz and 0.96 THz with 3 dB relative bandwidth of 31% and 17%, respectively. Results are measured using a THz time-domain spectroscopy system that shows agreement with simulations. Physical mechanisms of the broad dual-band resonance are clarified based on transmissions of different structures and surface current density distributions. Influence of structure parameters on the transmission characteristics are discussed. Symmetry of the structure ensures the filter polarization independence at normal incidence. These results supported by the design of the filter could find applications in broad multi-band sensors, terahertz communication systems, and other emerging terahertz technologies.