DOI QR코드

DOI QR Code

Terahertz Wave Transmission Properties of Metallic Periodic Structures Printed on a Photo-paper

  • Lee, Sung-Ho (Graduate Program of Photonics and Applied Physics, GIST) ;
  • Gee, Sang-Yoon (Graduate Program of Photonics and Applied Physics, GIST) ;
  • Kang, Chul (Nanophotonics Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Kee, Chul-Sik (Nanophotonics Laboratory, Advanced Photonics Research Institute, GIST)
  • Received : 2010.06.04
  • Accepted : 2010.08.16
  • Published : 2010.09.25

Abstract

We printed a one-dimensional array of metallic wires and a two-dimensional array of metallic split ring resonators on a photo-paper by using a high-dots-per-inch resolution printer and an ink with silver nano-particles. The printed sample sizes are $1.0{\times}1.0cm^2$. The transmission measured by a terahertz time domain spectroscopy system shows that the arrays of wires and split ring resonators could act as polarizers and band-stop filters, respectively, in a terahertz frequency region.

Keywords

References

  1. S. Dexheimer, Terahertz Spectroscopy: Principles and Applications (Taylor & Francis, London, UK, 2007).
  2. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, USA, 2008).
  3. J. Joannopoulos, S. Johnson, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, USA, 1995).
  4. E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic crystal substrate,” J. Opt. Soc. Am. B 10, 404-407 (1993). https://doi.org/10.1364/JOSAB.10.000404
  5. R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrate,” IEEE Trans. Microw. Theory Tech. 47, 2131-2138 (1999). https://doi.org/10.1109/22.798009
  6. Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31, 1534-1536 (2006). https://doi.org/10.1364/OL.31.001534
  7. T. Prasad, V. L. Colvin, Z. Jian, and D. M. Mittleman, “Superprism effect in a metal-clad terahertz photonic crystal slab,” Opt. Lett. 32, 683-685 (2007). https://doi.org/10.1364/OL.32.000683
  8. Y. Zhao and D. Grischkowsky, “2-D terahertz metallic photonic crystals in parallel-plate waveguides,” IEEE Trans. Microw. Theory Tech. 55, 656-663 (2007) https://doi.org/10.1109/TMTT.2007.892798
  9. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002). https://doi.org/10.1063/1.1468897
  10. S. Kim, C.-S. Kee, and J. Lee, “Single-mode condition and dispersion of terahertz photonic crystal fiber,” J. Opt. Soc. Korea 11, 97-100 (2007). https://doi.org/10.3807/JOSK.2007.11.3.097
  11. M. Walther, A. Ortner, H. Meier, U. Loffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009). https://doi.org/10.1063/1.3276544
  12. K. Takano, T. Kawabata, C. F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R. P. Pan, C. L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Exp. 3, 016701 (2010). https://doi.org/10.1143/APEX.3.016701
  13. C. Kang, C.-S. Kee, I. B. Sohn, and J. Lee, “Spectral properties of THz-periodic metallic structures,” J. Opt. Soc. Korea 12, 196-199 (2008). https://doi.org/10.3807/JOSK.2008.12.3.196
  14. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Wald, “Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am. 67, 979-981 (1977). https://doi.org/10.1364/JOSA.67.000979
  15. C. L. Mok, W. G. Chambers, T. J. Parker, and A. E. Costley, “Far-infrared performance and application of freestanding grids wound from $5{\mu}m$ diameter tungsten wire,” Infrared Phys. 19, 437-442 (1979). https://doi.org/10.1016/0020-0891(79)90055-1
  16. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004). https://doi.org/10.1126/science.1094025
  17. R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments,” IEEE Transactions on Antennas and Propagation 51, 2572-2581 (2003). https://doi.org/10.1109/TAP.2003.817562

Cited by

  1. Effective description of THz localized waveguide resonance through metal film with split ring resonator holes: zero refractive index vol.18, pp.24, 2010, https://doi.org/10.1364/OE.18.025371
  2. Flexible Sub-THz Metal Wire Grid Polarizer Based on an EGaIn $_{24.5}$ Alloy 2016, https://doi.org/10.1109/TTHZ.2016.2578258
  3. Analysis of the THz response of a simple periodic graphite-based structure vol.22, pp.24, 2014, https://doi.org/10.1364/OE.22.030156
  4. Digital Aerosol Jet Printing for the Fabrication of Terahertz Metamaterials 2017, https://doi.org/10.1002/admt.201700236
  5. Contactless In Situ Electrical Characterization Method of Printed Electronic Devices with Terahertz Spectroscopy vol.19, pp.3, 2019, https://doi.org/10.3390/s19030444