Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.2.263

Broadband and Polarization Independent Terahertz Metamaterial Filters Using Metal-Dielectric-Metal Complementary Ring Structure  

Qi, Limei (School of Electronic Engineering, Beijing University of Posts and Telecommunications)
Publication Information
Journal of the Optical Society of Korea / v.20, no.2, 2016 , pp. 263-268 More about this Journal
Abstract
Broadband metal-dielectric-metal terahertz filters composed of complementary rings are designed and demonstrated. Four samples with different parameters were fabricated. Results measured using THz time-domain spectroscopy system show excellent agreement with simulations. Compared with the broadband filters reported before, the complementary ring structure in our design is insensitive to any polarization at normal incidence due to symmetry of the ring. Furthermore, the influence of structure parameters (such as period, radius, slot width, thickness and incidence angles) on the transmission characteristics has been investigated theoretically. The encouraging results afforded by designing of the filters could find applications in broadband sensors, terahertz communication systems, and other emerging terahertz technologies.
Keywords
Broadband; Bandpass filter; Metamaterial; Polarization-independent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).   DOI
2 W. Pan, J. Chen, T. Duo, and Z. Liu, “Analysis and design of complementary ring type metamaterial filter in THz wave domain,” Telkomnika Indonesian Journal of Electrical Engineering 12, 5508-5513 (2014).
3 L. Liang, B. Jin, J. Wu, Y. Huang, Z. Ye, X. Huang, D. Zhou, G. Wang, X. Jia, H. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “A flexible wideband bandpass terahertz filter using multi-layer metamaterials,” Appl. Phys. B 113, 285-290 (2013).
4 M. Lu, W. Li, and E. R. Brown, “Second-order bandpass THz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36, 1071-1073 (2011).   DOI
5 F. Lan, Z. Yang, L. Qi, X. Gao, and Z. Shi, “Terahertz dual-resonance bandpass filter using bilayer reformative comple-mentary metamaterial structures,” Opt. Lett. 39, 1709-1712 (2014).   DOI
6 X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84, 235106 (2011).   DOI
7 J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21, 11101-11106 (2013).   DOI
8 J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22, 3747-3753 (2014).   DOI
9 V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).   DOI
10 N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).   DOI
11 N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).   DOI
12 B. A. Munk, Frequency Selective Surfaces: Theory and Design, 1st ed. (John Wiley and Sons Inc., 2000).
13 L. Qi, C. Li, G. Fang, and S. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chinese Physics B 24, 107802 (2015).   DOI
14 H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, Mark Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084-1095 (2007).   DOI
15 H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active metamaterial terahertz devices,” Nature 444, 597-600 (2006).   DOI
16 V. D. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10, 509-514 (1968).   DOI
17 K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Physical Review B, Condensed Matter and Materials Physics 87, 2095-2100 (2013).
18 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).   DOI
19 J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).   DOI
20 C. Lee, W. Shim, Y. Moon, and C. Seo, “Design of ultra-wide band-pass filter based on metamaterials applicable to microwave photonics,” J. Opt. Soc. Korea 16, 288-291 (2012).   DOI
21 W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
22 J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99, 137401 (2007).   DOI
23 R. Dickie, R. Cahill, V. F. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 2, 450-461 (2011).
24 A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission sub-wavelength hole arrays,” Opt. Lett. 31, 2637-2639 (2006).   DOI
25 X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37, 906-908 (2012).   DOI
26 X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).   DOI
27 L. Wang, Z. Geng, X. He, Y. Cao, Y. Yang, and H. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelec. Lett. 11, 33-35 (2015).   DOI
28 J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253-1259 (2006).   DOI
29 J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647-2650 (2010).   DOI
30 R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and Perspectives,” IEEE Antennas and Propagation Magazine 49, 24-39 (2007).
31 L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nature Communications 5, 3055 (2014).
32 J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17, 16527-16534 (2009).   DOI