• Title/Summary/Keyword: tensor computation

Search Result 25, Processing Time 0.025 seconds

An Adaptive Finite Element Method for Magnetostatic Force Computations (정자력 계산을 위한 적응 유한 요소법)

  • Park, Yong-Gyu;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.24-27
    • /
    • 1988
  • This paper presents an adaptive finite element method for magnetostatic force computation using Maxwell's stress tensor Mesh refinements are performed automatically by interelement flux density discontinuity errors and element force errors. In initial mesh, the computed forces for different Integration paths give great differences. but converge to a certain value as mesh division is performed by the adaptive scheme, We obtained good agreement between analytic solutions and numerical values In typical examples.

  • PDF

A Study on a Novel Method for Electromagnetic Force Computation based on Continuum Design Sensitivity Analysis (연속체 설계 민감도해석을 이용한 새로운 전자기력 계산방법에 관한 연구)

  • Kim Dong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.287-293
    • /
    • 2005
  • Equations have been derived for computing electromagnetic forces by using the Continuum Design Sensitivity Analysis based on the Continuum Mechanics and the Virtual Work Principle. The resultant expressions have similar terms relating to the Korteweg-Holmholz force density, Maxwell Stress Tensor and Magnetic Charge Method but numerical implementation of the proposed scheme leads to efficient calculation and improved accuracy. In addition, the method can be easily applied to computing the magnetic force distribution as well as the global force. Results show the aforementioned advantages in comparison with the conventional methods.

Computation of supersonic turbulent base flow using two-equation and Reynolds stress models (2-방정식 및 레이놀즈 응력 모형을 이용한 초음속 난류 기저유동의 수치적 계산)

  • Kim M. H.;Park S. O.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.9-17
    • /
    • 1997
  • The performance of several turbulence models in computing an axisymmetric supersonic base flow is investigated. A compressible Navier-Stokes code, which incorporates k-ε, k-ω model and Reynolds stress closure with three kinds of pressure-strain correlation model, has been developed using implicit LU-SGS algorithm with second-order upwind TVD scheme. Numerical computations have been carried out for Herrin and Dutton's base flow. It is observed that the two-equation models give large backward axial velocity approaching to the base and somewhat larger variation of base pressure distribution than the Reynolds stress model. It is also found that the Reynolds stress model with third order pressure-strain model in the anisotropy tensor predicts most accurate mean flow field.

  • PDF

Prediction of Permeability for Multi-axial Braided Preform by Using CVFEM (검사체적 유한요소법을 이용한 다축 브레이드 프리폼의 투과율 계수 예측)

  • Y. S. Song;K. Chung;T. J. Kang;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.68-70
    • /
    • 2002
  • Prediction of 3-D permeability tensor for multi-axial preform is critical to model and design the manufacturing process of composites by considering resin flow through the multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for braided preform are predicted numerically. The flow analyses are calculated by using 3-D CVFEM(control volume finite element method) for macro-unit cells. To avoid checker-board pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytic solutions. Permeability of a braided preform is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Unlike other studies, the current study is based on more realistic unit cell and prediction of permeability is improved.

  • PDF

Turbulent Flow through a Rotating Curved Duct with Reynolds Stress Model to Automatically Sencer the Presence of a Wall (벽면감지장치를 가지는 RSM에 의한 회전하는 곡관 내 난류유동)

  • Chun, Kun-Ho;Kim, Dong-Chul;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.473-478
    • /
    • 2000
  • In this study, the characteristics of the three-dimensional turbulent flow in a rotating square sectioned $90^{\circ}$ bend were investigated by numerical simulation and experiment. In the experimental study, the characteristics of a developing turbulent flow are measured using hot-wire anemometer to seize the rotational effects on the flow characteristics and to compare the results of computational simulation with Reynolds stress model. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

Numerical analysis of viscoelastic flows in a channel obstructed by an asymmetric array of obstacles

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.161-167
    • /
    • 2006
  • This study presents results on the numerical simulation of Newtonian and non-Newtonian flow in a channel obstructed by an asymmetric array of obstacles for clarifying the descriptive ability of current non-Newtonian constitutive equations. Jones and Walters (1989) have performed the corresponding experiment that clearly demonstrates the characteristic difference among the flow patterns of the various liquids. In order to appropriately account for flow properties, the Navier-Stokes, the Carreau viscous and the Leonov equations are employed for Newtonian, shear thinning and extension hardening liquids, respectively. Making use of the tensor-logarithmic formulation of the Leonov model in the computational scheme, we have obtained stable solutions up to relatively high Deborah numbers. The peculiar characteristics of the non-Newtonian liquids such as shear thinning and extension hardening seem to be properly illustrated by the flow modeling. In our opinion, the results show the possibility of current constitutive modeling to appropriately describe non-Newtonian flow phenomena at least qualitatively, even though the model parameters specified for the current computation do not precisely represent material characteristics.

Turbulent Flow through a Square Straight and Curved Duct with Reynolds Stress Models (정사각 직관과 $180^{\circ}$ 곡관내 난류유동의 레이놀즈응력모형 적용)

  • Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.771-776
    • /
    • 2000
  • Fine grid calculations are reported for the developing turbulent flow in a straight duct and a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=R_c/H_H=3.357$ and a bend angle of 180 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

Analysis of Interior-Type Permanent Magnet Synchronous Motor Using Finite Element Method (유한 요소법에 의한 매입형 영구 자석 동기 전동기의 특성 해석)

  • Kim, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.723-734
    • /
    • 1992
  • In this paper, the characteristics of IPMSM(Interior-type Permanent Magnet Synchronous Motor) are simulated using 2-D. finite element method. This paper deals with the following characteristics : air gap flux density considering skew, back e.m.f., torque and inductance. Back e.m.f. is calculated using the flux obtained from the vector potential of FEM solution. Torque is calculated using improved Maxwell stress tensor method and current angle which is obtained from the controller. Direct axis inductance and quadrature axis inductance are also calculated using energy perturbation method. Computed results are found in satisfactory agreement with experimental ones. This method also can be applied for the computation and analysis of the characteristics of SPMSM, current-excited synchronous motor and reluctance motor.

Deep Learning Based On-Device Augmented Reality System using Multiple Images (다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템)

  • Jeong, Taehyeon;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.341-350
    • /
    • 2022
  • In this paper, we propose a deep learning based on-device augmented reality (AR) system in which multiple input images are used to implement the correct occlusion in a real environment. The proposed system is composed of three technical steps; camera pose estimation, depth estimation, and object augmentation. Each step employs various mobile frameworks to optimize the processing on the on-device environment. Firstly, in the camera pose estimation stage, the massive computation involved in feature extraction is parallelized using OpenCL which is the GPU parallelization framework. Next, in depth estimation, monocular and multiple image-based depth image inference is accelerated using the mobile deep learning framework, i.e. TensorFlow Lite. Finally, object augmentation and occlusion handling are performed on the OpenGL ES mobile graphics framework. The proposed augmented reality system is implemented as an application in the Android environment. We evaluate the performance of the proposed system in terms of augmentation accuracy and the processing time in the mobile as well as PC environments.

Computation of Tsunamis of the 1992 Flores Island Earthquake (1992년 플로레스 쓰나미의 산정)

  • 최병호;우승범
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1994
  • Tsunamis generated by of the 1992 Flores Island Earthquake in Indonesia caused tremendous casualties and damages. This tsunami event was hindcasted via numerical tsunami models. Initial conditions were taken from fault parameters from Havard CMT (Centroid Moment Tensor) solution and additional subaqueous slump consideration at the Inner Hading Bay and Riang Krok, Leworahang coasts. The computed results showed general agreements with observations made by the International Tsunami Survey Group. Subsequently a runup model was developed to investigate catastrophic runup at southern shore of the Babi Island with fine grid resolution of 50 m. Computed results were recorded to construct rendered images for video animation. The computer-graphic aided video animation showed a remarkable reproduction of tsunami propagation and runup at southern coast of the Babi Island.

  • PDF