• 제목/요약/키워드: tensile fabric structure

검색결과 56건 처리시간 0.021초

Time history analysis of a tensile fabric structure subjected to different seismic recordings

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Chiumenti, Michele;Hernandez-Martinez, Alejandro
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.161-173
    • /
    • 2021
  • The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types ofstructures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results ofseismic stresses in the fabric, but not in the frame.

직물구조가 신합섬 직물의 역학적 특성에 미치는 영향 (I) 직물밀도 및 감량가공이 전단특성에 미치는 영향 (Effect of Fabirc Structure on the Mechanical Properties of Shingosen Fabric)

  • 서문호
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1994년도 추계 학술발표회
    • /
    • pp.11-11
    • /
    • 1994
  • A new theoretical fabric shear model has been presented and a quantitative study has been conducted on the shear properties of polyethylene(terephthalate)(PET) fabrics of four different fabric densities and five different weight reduction. The fabric shear properties were measured with KES-F handle measurement system. From the theoretical and experimental studies, following results can be summarized : 1) The fabric shear behavior is strongly dependent on the fabric density and free volume available for the constituent yarns and their filament. 2) Shear hysteresis at the small shear angle(2HG) is dependent more on the yarn tensile properties than on the fabric structure. 3) Shear hysteresis at the shear angle, 5(2HG5) is dependent more on the interaction between two crossing yarns which is directly related on the fabric structure than on the yarn tensile properties.

  • PDF

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

풍력블레이드의 패브릭 스킨재료 물성 시험방법에 대한 고찰 (Review of Test Methods for Fabric Skin Properties of Fabric-Covered Wind Turbine Blade)

  • 조형순;배재성;이수용
    • 항공우주시스템공학회지
    • /
    • 제9권3호
    • /
    • pp.31-38
    • /
    • 2015
  • Wind Turbines are becoming larger in size in order to improve economic efficiency through cost reduction, such as the construction of growth and power infrastructure of energy efficiency. It have requested the large-scale blade design and production. In the present study the new manufacture technique called a fabric-blade structure using spar, rib, and fabric membrane skin is introduced. The architectural membrane test method has been studied to be applied to the skin of the blade. The density and one-axis tensile tests of the architectural membrane materials are conducted to confirm the physical properties which are necessary to the structural designs and analyses of the wind turbine blade.

중공사를 이용한 침장용 소재의 구조적 특성에 따른 역학적 특성 및 태분석 (The Mechanical Properties and Hand Evaluation of Bedclothes with Hollow Spun Yarn)

  • 최현석;장현미;정문규;전연희;배지현
    • 한국염색가공학회지
    • /
    • 제31권4호
    • /
    • pp.298-311
    • /
    • 2019
  • In this study, the mechanical properties and hand characteristics of the knitted and woven fabrics for bedding items are investigated in accordance with fabric structural parameters including the fiber type and proportion, the density of the fabric, and the knit/weave structure. The knit stitches and structure of the knit samples made an effect on tensile properties. The bending, shear and compression properties for the knit fabric were mainly affected by fiber contents of the samples. The tensile and bending properties of woven samples were highly correlated with the fabric density, thickness and structure, and those shear and compression properties were affected by the fiber contents and structure. Consequently, the primary hand values of the selected samples we developed were estimated to have good smoothness, fullness and softness, and soft feeling, which is well correlated to the parameters of consumer preference such as softness, warmness, and bulkiness. Also, their total hand values were increased.

Poly(trimethylene terephthalate, PTT) 1×1리브 편성물의 신장특성에 관한 연구 (A Study of the Tensile Properties for Poly(trimethylene terephthalate, PTT) 1×1 Rib Knitted fabrics)

  • 최재우;장봉식
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.337-341
    • /
    • 2006
  • The tensile properties of Poly(trimethylene terephthalate, PTT) $1{\times}1Rib$ knitted fabrics were experimentally studies, and the specimens has $1{\times}1$ rib stitched structure which are weft knitted fabrics with various lengths of loop. The $1{\times}1$ rib weft knitted fabric showed larger tensile linearity, tensile energy and tensile resilience in the direction of courses. The tensile properties increased with increasing the loop density in all directions, and perfectly increased with the course directions than the wale directions.

  • PDF

키토산처리에 의한 텐셀 직물의 개질기능화(I) - 물성 변화를 중심으로 - (Modification of Tencel Fabric Treated with Chitosan ( I ) - Change of Physical Properties -)

  • 배현숙;육은영
    • 한국염색가공학회지
    • /
    • 제14권1호
    • /
    • pp.18-26
    • /
    • 2002
  • Chitosan has reactive amino and hydroxyl groups which can be used to chemically alter its properties under the mild reaction conditions. Thus the cationization of Tencel with Chitosan is effective to modify the fabric. To investigate the modified properties of Tencel fabric, the tests were performed under the several finishing process with enzyme/glutaraldehyde/softener. The internal structure of Tencel which has the structure of cellulose II wasn't changed by enzyme, chitosan and crosslinking agent treatment and the thermal stability was improved by chitosan and crosslinking agent treatment. Wrinkle recovery angle under the dry condition increased highly until $0.1\textrm{mol}/\ell$ of glutaraldehyde concentration, and then decreased. Tensile strength of modified Tencel fabric decreased with increasing of weight loss, but it was improved more or less by chitosan, crosslinking agent and softener. Moisture regain was improved by enzyme and chitosan treatment. And antibacterial activity showed nearly 100% on Tencel fabric treated with 0.5% chitosan and adsorption of metal ion increased with increasing of chitosan concentration.

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

위사번수와 조직이 면직물의 역학특성 및 태에 미치는 영향 (Influence of Weft's Cotton Count & Weave Construction on the Mechanical Properties & Hand of Cotton Woven Fabrics)

  • 배진화;박정환;안승국
    • 한국의류산업학회지
    • /
    • 제7권5호
    • /
    • pp.553-559
    • /
    • 2005
  • Hand characteristics related with structural properties of fabrics have something to do with mechanical properties of fabric. In this study, the mechanical properties and hand characteristics have been analyzed according to fabric structural parameters such as the weave structure and the linear density of weft of cotton fabric. Mechanical properties have been used by KES-FB system which measures hand characteristics and mechanical properties of fabric. Linear density of weft, tensile, bending, and shear properties are decreasing with increasing weft linear density, and there is no considerable effects on compression and surface properties. In case of formability with weft linear density, B/W, 2HG/G, 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, $\sqrt{2HB/W}$, W/T except MMD/SMD, WC/T, and WC/W have been effected. There is a high correlation between the crimp, tightness, hand, formability and mechanical properties specially tensile linearity, bending, shear, and compression properties. The weft crimp influences the bending rigidity, shear properties, and the tightness which have effects on the tensile linearity, bending, shear, compression properties, hand, and formability.

HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석 (Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process)

  • 변기석;신유정;정한규;박시우;노춘수;제진수;권기철
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.