DOI QR코드

DOI QR Code

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G. (Department of Civil Engineering, Universidad de Guanajuato) ;
  • Garcia-Soto, Adrian D. (Department of Civil Engineering, Universidad de Guanajuato) ;
  • Hernandez-Martinez, Alejandro (Department of Civil Engineering, Universidad de Guanajuato) ;
  • Nava, Jose L. (Department of Geomatic and Hydraulic Engineering, Universidad de Guanajuato)
  • Received : 2020.05.07
  • Accepted : 2020.12.18
  • Published : 2020.12.25

Abstract

Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

Keywords

Acknowledgement

The support from Universidad de Guanajuato is gratefully acknowledge. We are thankful to the reviewers for their suggestions which helped us to improve this study. Also, we are grateful to the International Centre for Numerical Methods in Engineering (CIMNE) for providing us with the pre- and post-processor GiD (2020) in our CIMNE-Classroom at the Civil and Environmental Engineering Department.

References

  1. Aly, A.M. and Gol-Zaroudi, H. (2020), "Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements", Wind Struct., 30(1), 99-117. https://doi.org/10.12989/was.2020.30.1.099.
  2. Asadi, H., Hariri-Ardebili, M.A., Mirtaheri, M. and Zandi, A.P. (2018), "Force density ratios of flexible borders to membrane in tension fabric structures", Struct. Eng. Mech., 67(6), 555-563. https://doi.org/10.12989/sem.2018.67.6.555
  3. Barnes, M.R. (1999), "Form finding and analysis of tension structures by dynamic relaxation", Int. J. Space Struct., 14(2), 89-104. https://doi.org/10.1260/0266351991494722.
  4. Beatini, V. and Carfagni, G.R. (2016), "Large transformations with moderate strains of tensile membrane structures", Mathem. Mech. Solids., 22(8), 1717-1737. https://doi.org/10.1177/1081286516643360.
  5. Behr, M., Hastreiter, D., Mittal, S. and Tezduyar, T. (1995), "Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries", Computer Methods Appl. Mech. Eng., 123, 309-316. https://doi.org/10.1016/0045-7825(94)00736-7.
  6. Belytscho, T., Liu, W.K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures, Wiley, Chichester, England.
  7. Bletzinger, K.U. and Ramm, E. (1999), "A general finite element approach to the form finding of ten-sile structures by the updated reference strategy", Int. J. Space Struct., 14(2), 131-145. https://doi.org/10.1260/0266351991494759.
  8. Cervera, M., Agelet-de-Saracibar, C. and Chiumenti, M. (2002), "COMET. Coupled Mechanical and Thermal Analysis - Data Input Manual", International Center for Numerical Methods in Engineering, Barcelona, Spain.
  9. Codina, R. (2000), "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods", Comput. Methods Appl. Mech. Eng., 190(13-14), 1579-1599. https://doi.org/10.1016/S0045-7825(00)00254-1.
  10. Codina, R. (2001), "Pressure stability in fractional step finite element methods for incompressible flows", J. Comput. Phys., 170(1), 112-140. https://doi.org/10.1006/jcph.2001.6725.
  11. Colliers, J., Degroote, J., Mollaert, M. and De Laet, L. (2020), "Mean pressure coefficient distributions over hyperbolic paraboloid roof and canopy structures with different shape parameters in a uniform flow with very small turbulence", Eng. Struct., 205(2020) 110043. https://doi.org/10.1016/j.engstruct.2019.110043.
  12. Colomes, O., Badia, S., Codina, R. and Principe, J. (2015), "Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows", Comput. Methods Appl. Mech. Eng., 285, 32-63. https://doi.org/10.1016/j.cma.2014.10.041.
  13. Colomes, O. (2016), Large scale Finite Element solvers for the large eddy simulation of incompressible turbulent flows, Ph.D. Dissertation, Barcelona Tech University UPC, Barcelona, Spain.
  14. Cook, N.J. (2005), Wind Loading, A Practical Guide to Wind Loads on Buildings, Thomas Telford, U.K.
  15. De Smedt, E., Mollaert, M., Caspeele, R., Botte, W. and Pyl, L. (2020), "Reliability-based calibration of partial factors for the design of membrane structures", Eng. Struct., 214, 110632. https://doi.org/10.1016/j.engstruct.2020.110632.
  16. Dongmei, H., Xue, Z., Shiqing, H., Xuhui, H. and Hua, H. (2017), "Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section", Wind Struct., 24(5), 501-528. https://doi.org/10.12989/was.2017.24.5.501.
  17. Dutta, S., Ghosh, S. and Inamdar, M. (2017), "Reliability-based design optimization of free-supported tensile membrane structures", ASCE-ASME J. Risk Uncertainty Eng. Syst., 3(2), https://doi.org/10.1061/AJRUA6.0000866.
  18. Dutta, S., Ghosh, S. and Inamdar, M. (2018), "Optimisation of tensile membrane structures under uncertain wind loads using pce and kriging based metamodels", Struct. Multidisc. Optim., 57(3), 1149-1161. https://doi.org/10.1007/s00158-017-1802-5.
  19. Dutta, S. and Ghosh, S. (2019), "Analysis and design of tensile membrane structures: Challenges and recommendations", Practice Periodic. Struct. Des. Construct., 24(3). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000426.
  20. Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A. and Dagnew, A. (2016), "LES evaluation of wind-induced responses for an isolated and a surrounded tall building", Eng. Struct., 115, 179-195. https://doi.org/10.1016/j.engstruct.2016.02.026.
  21. Elshaer, A., Aboshosha, H., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
  22. Finlay, W.H. (2001), The Mechanics of Inhaled Pharmaceutical Aerosols. An Introduction, Academic Press, San Diego, California, U.S.A.
  23. Foster, B. and Mollaert, M. (2004), European Design Guide for Tensile Surface Structures, TensiNet Association, Brussels, Belgium.
  24. GiD (2020), The personal pre- and post-processor. CIMNE, www.gidhome.com, Barcelona, Spain.
  25. Guasch, O. and Codina, R. (2013), "Statistical behavior of the orthogonal subgrid scale stabilization terms in the finite element large eddy simulation of turbulent flows", Comput. Methods Appl. Mech. Eng., 261-262, 154-166. http://dx.doi.org/10.1016/j.cma.2013.04.006.
  26. Gosling, P.D., Bridgens, B.N., Albrecht, A., Alpermann, H., Angeleri, A., Barnes, M., Bartle, N., Canobbio, R., Dieringer, F., Gellin, S., Lewis, W.J., Mageau, N., Mahadevan, R., Marion, J.-M., Marsden, P., Milliganm, E., Phang, Y.P., Sahlin, K., Stimpfle, B., Suire, O. and Uhlemann J. (2013a), "Analysis and design of membrane structures: Results of a round robin exercise", Eng. Struct., 48, 313-328. http://dx.doi.org/10.1016/j.engstruct.2012.10.008.
  27. Gosling, P.D., Bridgens, B.N. and Zhang L. (2013b), "Adoption of a reliability approach for membrane structure analysis", Struct. Safety, 40, 39-50. http://dx.doi.org/10.1016/j.strusafe.2012.09.002.
  28. Guo, J., Zheng, S., Zhu, J., Tang, Y. and Hong, C. (2017), "Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory", Wind Struct., 25(4), 343-360. https://doi.org/10.12989/was.2017.25.4.343.
  29. Hincz, K. and Gamboa-Marrufo, M. (2016), "Deformed shape wind analysis of tensile membrane structures", J. Struct. Eng., 142(3), 04015153-1-04015153-5. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001437.
  30. Houzeaux, G. and Principe, J. (2008), "A variational subgrid scale model for transient incompressible flows", Int. J. Comput. Fluid Dyn., 22(3), 135-152. http://dx.doi.org/10.1080/10618560701816387.
  31. Huntington, C.G. (2010), Tensile Fabric Structures. Design, Analysis, and Construction, Task Committee on Tensioned Fabric Structures, Reston, Virginia, U.S.A.
  32. Keerthana, M. and Harikrishna, P. (2017), "Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence", Wind Struct., 25 (3), 301-328. https://doi.org/10.12989/was.2017.25.3.301.
  33. Labbafi, S.F., Sarafrazi, S.R. and Kang, T.H.K. (2017a), "Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures", Advan. Comput. Des., 2(1), 71-87. https://doi.org/10.12989/acd.2017.2.1.071.
  34. Labbafi, S.F., Sarafrazi, S.R., Gholami, H. and Kang, T.H.K. (2017b), "A novel approach to the form-finding of membrane structures using dynamic relaxation method", Advan. Comput. Des., 2(3), 123-141. https://doi.org/10.12989/acd.2017.2.3.123.
  35. Lee, H., Moon, J., Chun, N. and Lee, H. (2017), "Effect of beam slope on the static aerodynamic response of edge-girder bridgedeck", Wind Struct., 25(2), 157-176. https://doi.org/10.12989/was.2017.25.2.157.
  36. Liu, X., Zou, M., Wu, C., Cai, M., Min, G. and Yang, S. (2020), "Galloping stability and wind tunnel test of iced quad bundled conductors considering wake effect", Discrete Dyn. Nature Soc., 2020, 8885648, https://doi.org/10.1155/2020/8885648.
  37. Onate, E. (2000), "A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation", Comput. Methods Appl. Mech. Eng., 182(3-4), 355-370. https://doi.org/10.1016/S0045-7825(99)00198-X.
  38. Panton, R.L. (2013), Incompressible flow, Wiley, New Jersey, U.S.A.
  39. Pham, A.T. and Tan, K.H. (2019), "Analytical model for tensile membrane action in RC beam-slab structures under internal column removal", J. Struct. Eng., 145(6). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002303.
  40. Phys.org news (2010), "NIST releases final report on Cowboys facility collapse", https://phys.org/news/2010-01-nist-cowboys-facility-collapse.html (last accessed December 1 st 2020).
  41. Quan, Y., Hou, F. and Gu, M. (2017), "Effects of vertical ribs protruding from facades on the wind loads of super high-rise buildings", Wind Struct., 24(2), 145-169. https://doi.org/10.12989/was.2017.24.2.145.
  42. Rizzo, F., Sepe, V., Ricciardelli, F. and Avossa, M.A. (2020), "Wind pressures on a large span canopy roof", Wind Struct., 30(3), 299-316. https://doi.org/10.12989/was.2020.30.3.299.
  43. Schek, H.J. (1974), "The force density method for form finding and computation of general networks", Comput. Methods Appl. Mech. Eng., 3(1), 115-134. https://doi.org/10.1016/0045-7825(74)90045-0.
  44. Simiu, E. and Yeo, D. (2019), Wind Effects on Structures. Modern Structural Design for Wind, Wiley, Chichester, U.K.
  45. Su, Y., Xiang, H., Fang, C., Wang, L. and Li, Y. (2017), "Wind tunnel tests on flow fields of full-scale railway wind barriers", Wind Struct., 24(2), 171-184. https://doi.org/10.12989/was.2017.24.2.171.
  46. Sun, X., Yu, R. and Wu, Y. (2019), "Investigation on wind tunnel experiments of ridge-valley tensile membrane structures", Eng. Struct., 187, 280-298. https://doi.org/10.1016/j.engstruct.2019.02.039.
  47. Tabarrok, B. and Qin, Z. (1992), "Nonlinear analysis of tension structures", Comput. Struct., 45(5-6), 973-984. https://doi.org/10.1016/0045-7949(92)90056-6.
  48. Valdes-Vazquez, J.G. (2007), Nonlinear analysis of orthotropic membrane and shell structures including fluid-structure interaction, Ph.D. Dissertation, Barcelona Tech University UPC, Barcelona, Spain.
  49. Valdes, J.G. and Onate, E. (2009), "Orthotropic rotation-free basic thin shell triangle", Comput. Mech., 44(3), 363-375. https://doi.org/10.1007/s00466-009-0370-y.
  50. Valdes, J.G., Canet, J. and Onate, E. (2009), "Nonlinear finite element analysis of orthotropic and prestressed membrane structures", Finite Elements Anal. Des., 45(6-7), 395-405. https://doi.org/10.1016/j.finel.2008.11.008.
  51. Valdes-Vazquez, J.G., Garcia-Soto, A.D. and Hernandez-Martinez, A. (2019), "Dynamic analysis of hypar membrane structures subjected to seismic excitations", Rev. int. metodos numer. calc. diseno ing., 35(1), 1-11. https://doi.org/10.23967/j.rimni.2018.11.005.
  52. Xu, Y., Zheng, Z., Liu, C., Wu, K. and Song, W. (2018), "Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction", Wind Struct., 26(6), 355-367. https://doi.org/10.12989/was.2018.26.6.355.
  53. Zhang, Y., Lu, Y., Zhou, Y. and Zhang, Q. (2018), "Resistance uncertainty and structural reliability of hypar tensioned membrane structures with PVC coated polyesters", Thin-Wall. Struct., 124, 392-401. https://doi.org/10.1016/j.tws.2017.12.026.
  54. Zhi, L., Yu, P., Tu, J., Chen, B. and Li, Y. (2017), "A Kalman filter-based algorithm for wind load estimation on high-rise buildings", Struct. Eng. Mech., 64(4), 449-459. https://doi.org/10.12989/sem.2017.64.4.449.
  55. Zhou, R., Ge, Y., Yang, Y., Du, Y. and Zhang, L. (2020), "Aerodynamic performance evaluation of different cable-stayed bridges with composite decks", Steel Compos. Struct., 34(5), 699-713. https://doi.org/10.12989/scs.2020.34.5.699.