DOI QR코드

DOI QR Code

Time history analysis of a tensile fabric structure subjected to different seismic recordings

  • Valdes-Vazquez, Jesus G. (Department of Civil and Environmental Engineering, Universidad de Guanajuato) ;
  • Garcia-Soto, Adrian D. (Department of Civil and Environmental Engineering, Universidad de Guanajuato) ;
  • Chiumenti, Michele (International Center for Numerical Methods in Engineering (CIMNE), Univeridad Politecnica de Cataluna) ;
  • Hernandez-Martinez, Alejandro (Department of Civil and Environmental Engineering, Universidad de Guanajuato)
  • Received : 2020.03.28
  • Accepted : 2021.01.27
  • Published : 2021.02.25

Abstract

The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types ofstructures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results ofseismic stresses in the fabric, but not in the frame.

Keywords

Acknowledgement

The support from Universidad de Guanajuato is gratefully acknowledge. We are thankful to two anonymous reviewers for their comments, suggestions, and constructive criticism.

References

  1. Allstadt, K.E., Jibson, R.W., Thompson, E.M., Massey, C.I., Wald, D.J., Godt, J.W. and Rengers, F.K. (2018), "Improving near‐real‐time coseismic landslide models: lessons learned from the 2016 Kaikoura, New Zealand, Earthquake", Bull. Seismol. Soc. Amer., 108(3B), 1649-1664. https://doi.org/10.1785/0120170297.
  2. Argyris, J.H., Angelopoulos, T. and Bichat, B. (1974), "A general method for the shape finding of lightweight tension structures", Comput. Methods Appl. Mech. Eng., 3, 135-149. https://doi.org/10.1016/0045-7825(74)90046-2.
  3. Barnes, M. (1999), "Form finding and analysis of tension structures by dynamic relaxation", Int. J. Space Struct., 14, 89-104. https://doi.org/10.1260/0266351991494722.
  4. Bletzinger, K. and Ramm, E. (1999), "A general finite element approach to the form finding of tensile structures by the updated reference strategy", Int. J. Space Struct., 14(2), 131-145. https://doi.org/10.1260/0266351991494759.
  5. Candia, G., de Pascale, G., Montalva, G. and Ledezma, C. (2017), "Geotechnical aspects of the 2015 Mw 8.3 Illapel megathrust earthquake sequence in Chile", Earthq. Spectra, 33(2), 709-728. https://doi.org/10.1193/031716EQS043M.
  6. Civico, R., Pucci, S., Villani, F., Pizzimenti. L., De Martini, P.M., Nappi, R. and the Open EMERGEO Working Group (2018), "Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy", J. Maps, 14(2), 151-160, https://doi.org/10.1080/17445647.2018.1441756.
  7. Clementi, F., Ferrante, A., Giordano, E., Dubois, F. and Lenci, S. (2020), "Damage assessment of ancient masonry churches stroked by the Central Italy earthquakes of 2016 by the non‑smooth contact dynamics method", Bull. Earthq. Eng., 18, 455-486. https://doi.org/10.1007/s10518-019-00613-4.
  8. Cramer, C.H. and Jambo, E. (2020), "Impact of a larger fore-arc region on earthquake ground motions in south-central Alaska including the 2018 M 7.1 Anchorage inslab earthquake", Seismol. Res. Lett., 91, 174-182. https://doi.org/10.1785/0220190183.
  9. Crowell, B.W., Melgar, D. and Geng, J. (2018), "Hypothetical Real‐Time GNSS Modeling of the 2016 Mw 7.8 Kaikoura Earthquake: Perspectives from Ground Motion and Tsunami Inundation Prediction", Bull. Seismol. Soc. Amer., 108(3B), 1736-1745. https://doi.org/10.1785/0120170247.
  10. D'Amico, M., Felicetta, C., Schiappapietra, E., Pacor, F., Gallovic, F., Paolucci, R., Puglia, R., Lanzano, G., Sgobba, S. and Luzi, L. (2019), "Fling effects from near-source strongmotion records: insights from the 2016 Mw 6.5 Norcia, Central Italy, Earthquake", Seismol. Res. Lett., 90(2A), 659-671. https://doi:.org/10.1785/0220180169.
  11. Fernandez, J., Pasten, C., Ruiz, S. and Leyton, F. (2019), "Damage assessment of the 2015 Mw 8.3 Illapel earthquake in the NorthCentral Chile", Nat. Hazards, 96, 269-283. https://doi.org/10.1007/s11069-018-3541-3.
  12. Haug, E. and Powell, G.H. (1972), "Analytical shape finding for cable nets", Proceedings of 1971 IASS Symposium Part II on Tension Structures and Space Frames.
  13. Huntington, C.G. (2013), Tensile Fabric Structures: Design, Analysis, and Construction, ASCE, Virginia, U.S.A.
  14. Kaiser, A., Balfour N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D'Anastasio, E., Horspool, N., McVerry, G., Ristau, J., Bannister, S., Christophersen, A., Clark, K., Power, W., Rhoades, D., Massey, C., Hamling, I., Wallace, L., Mountjoy, J., Kaneko, Y., Benites, R., Van Houtte, C., Dellow, S., Wotherspoon, L., Elwood, K. and Gledhill, K. (2017), "The 2016 Kaikoura, New Zealand, earthquake: Preliminary seismological report", Seismol. Res. Lett., 88(3), 727-739. https://doi.org/10.1785/0220170018.
  15. Kaiser, A., Van Houtte, C., Perrin, N., Wotherspoon, L. and McVerry, G. (2017), "Site characterisation of GeoNet stations for the New Zealand strong motion database", Bull. New Zeal. Soc. Earthq. Eng., 50(1), 39-49. https://doi.org/10.5459/bnzsee.50.1.39-49.
  16. Linkwitz, K. (1999), "Formfinding by the 'direct approach' and pertinent strategies for the conceptual design of prestressed and hanging structures", Int. J. Space Struct., 14(2), 73-87. https://doi.org/10.1260/0266351991494713.
  17. Linkwitz, K. and Scheck, H.J. (1971), "Einige bemerkungen zur berechunung vorgespannter seilnetzkonstruktionen", IngenieurArchiv, 40, 145-158. https://doi.org/10.1007/BF00532146.
  18. Luzi, L., Pacor, F., Puglia, R., Lanzano, G., Felicetta C., D'Amico, M., Michelini, A., Faenza, L., Lauciani, V., Iervolino, I., Baltzopoulus, G. and Chioccarelli, E. (2017), "The central Italy seismic sequence between August and December 2016: Analysis of strong-motion observations", Seismol. Res. Lett., 88, 1219-1231. https://doi.org/10.1785/0220170037.
  19. Luzi, L., Puglia, R., Russo, E. and ORFEUS WG5 (2016), Engineering Strong Motion Database, Version 1.0, Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for European Seismology. https://doi.org/10.13127/ESM.
  20. ReLUIS-INGV Workgroup (2016), "Preliminary study on strong motion data of the 2016 central Italy seismic sequence V6", http://www.reluis.it.
  21. Scheck, H.J. (1974), "The force density method for form finding and computation of general networks", Comput. Methods Appl. Mech. Eng., 3, 115-134. https://doi.org/10.1016/0045-7825(74)90045-0.
  22. Tabarrok, B. and Qin, Z. (1992), "Nonlinear analysis of tension structures", Comput. Struct., 45(5-6), 973-984. https://doi.org/10.1016/0045-7949(92)90056-6.
  23. Valdes-Vazquez, J., Garcia-Soto, A. and Hernandez-Martinez, A. (2019), "Dynamic analysis of hypar membrane structures subjected to seismic excitations", Rev. Int. Metodos Numer. Calc. Diseño Ing., 35, 1-11. https://doi.org/10.23967/j.rimni.2018.11.005.
  24. Valdes, J.G., Miquel, J. and Oñate, E. (2009), "Nonlinear finite element analysis of orthotropic and prestressed membrane structures", Finite Elements Anal. Des., 45(6-7), 395-405. https://doi.org/10.1016/j.finel.2008.11.008.
  25. Veneendaal, D. and Block, P. (2012), "An overview and comparison of structural form finding methods for general networks", Int. J. Solids Struct., 49(26), 3741-3753. https://doi.org/10.1016/j.ijsolstr.2012.08.008.
  26. Wakefield, D.S. (1999), "Engineering analysis of tension structures: theory and practice", Eng. Struct., 21(8), 680-690. https://doi.org/10.1016/S0141-0296(98)00023-6.
  27. Wang, T., Wei, S., Shi, X., Qiu, Q., Li, L., Peng, D., Weldon, R. J. and Barbot, S. (2018), "The 2016 Kaikoura earthquake: Simultaneous rupture of the subduction interface and overlying faults", Earth Planet. Sci. Lett. 482, 44-51. https://doi.org/10.1016/j.epsl.2017.10.056.
  28. West, M.E., Bender, A., Gardine, M., Gardine, L., Gately, K., Haeussler, P., Hassan W., Meyer, F., Richards, C., Ruppert, N., Tape, C., Thornley, J. and Witter, R. (2019), "The 30 November 2018 Mw 7.1 Anchorage Earthquake", Seismol. Res. Lett. 91, 66-84. https://doi.org/10.1785/0220190176.
  29. Wood, R.D. (2002), "A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes", Comput. Struct., 80(27-30), 2115-2120. https://doi.org/10.1016/S0045-7949(02)00274-2.
  30. Wuchner, R. and Bletzinger, K.U. (2005), "Stress-adapted numerical form finding of pre-stressed surfaces by the updated reference strategy", Int. J. Numer. Meth. Engng, 64, 143-166. https://doi.org/10.1002/nme.1344.