• Title/Summary/Keyword: tendon-anchorage

Search Result 49, Processing Time 0.023 seconds

Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.181-195
    • /
    • 2017
  • In this study, the severity of damage in tendon anchorage caused by the loss of tendon forces is quantitatively identified by using the PZT interface-based impedance monitoring technique. Firstly, a 2-DOF impedance model is newly designed to represent coupled dynamic responses of PZT interface-host structure. Secondly, the 2-DOF impedance model is adopted for the tendon anchorage system. A prototype of PZT interface is designed for the impedance monitoring. Then impedance signatures are experimentally measured from a laboratory-scale tendon anchorage structure with various tendon forces. Finally, damage severities of the tendon anchorage induced by the variation of tendon forces are quantitatively identified from the phase-by-phase model updating process, from which the change in impedance signatures is correlated to the change in structural properties.

Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation

  • Huynh, Thanh-Canh;Lee, Kwang-Suk;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.375-393
    • /
    • 2015
  • In this study, local dynamic characteristics of mountable PZT interfaces are numerically analyzed to verify their feasibility on impedance monitoring of the prestress-loss in tendon anchorage subsystems. Firstly, a prestressed tendon-anchorage system with mountable PZT interfaces is described. Two types of mountable interfaces which are different in geometric and boundary conditions are designed for impedance monitoring in the tendon-anchorage subsystems. Secondly, laboratory experiments are performed to evaluate the impedance monitoring via the two mountable PZT interfaces placed on the tendon-anchorage under the variation of prestress forces. Impedance features such as frequency-shifts and root-mean-square-deviations are quantified for the two PZT interfaces. Finally, local dynamic characteristics of the two PZT interfaces are numerically analyzed to verify their performances on impedance monitoring at the tendon-anchorage system. For the two PZT interfaces, the relationships between structural parameters and local vibration responses are examined by modal sensitivity analyses.

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.

Material and geometric properties of hoop-type PZT interface for damage-sensitive impedance responses in prestressed tendon anchorage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.129-155
    • /
    • 2022
  • In this study, parametric analyses on a hoop-type PZT (lead-zirconate-titanate) interface are performed to estimate the effects of the PZT interface's materials and geometries on sensitivities of impedance responses under strand breakage. The paper provides a guideline for installing the PZT interface suitable in tendon anchorages for damage-sensitive impedance signatures. Firstly, the concept of the PZT interface-based impedance monitoring technique in prestressed tendon anchorage is briefly described. A FE (finite element) analysis is conducted on a multi-strands anchorage equipped with a hoop-type PZT interface for analyzing materials and geometric effects. Various material properties, geometric sizes of the interface, and PZT sensor are simulated under two states of prestressing force for acquiring impedance responses. Changes in impedance signals are statistically quantified to analyze the effect of these factors on damage-sensitive impedance monitoring in the tendon anchorage. Finally, experimental analyses are performed to demonstrate the effects of materials and geometrical properties of the PZT interface on damage-sensitive impedance monitoring.

PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.57-70
    • /
    • 2018
  • For the long-term structural health monitoring of civil structures, the effect of ambient temperature variation has been regarded as one of the critical issues. In this study, a principal component analysis (PCA)-based algorithm is proposed to filter out temperature effects on electromechanical impedance (EMI) monitoring of prestressed tendon anchorages. Firstly, the EMI monitoring via a piezoelectric interface device is described for prestress-loss detection in the tendon anchorage system. Secondly, the PCA-based temperature filtering algorithm tailored to the EMI monitoring of the prestressed tendon anchorage is outlined. The proposed algorithm utilizes the damage-sensitive features obtained from sub-ranges of the EMI data to establish the PCA-based filter model. Finally, the feasibility of the PCA-based algorithm is experimentally evaluated by distinguishing temperature changes from prestress-loss events in a prestressed concrete girder. The accuracy of the prestress-loss detection results is discussed with respect to the EMI features before and after the temperature filtering.

Constitutive law for wedge-tendon gripping interface in anchorage device - numerical modeling and parameters identification

  • Marceau, D.;Fafard, M.;Bastien, J.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.609-628
    • /
    • 2003
  • Mechanical anchorage devices are generally tested in the laboratory and may be analyzed using the finite element method. These devices are composed of many components interacting through diverse contact interfaces. Generally, a Coulomb friction law is sufficient to take into account friction between smooth surfaces. However, in the case of mechanical anchorages, a gripping system, named herein the wedge-tendon system, is used to anchor the prestressing tendon. The wedge inner surface is made of a series of triangular notches designed to grip the tendon. In this particular case, the Coulomb law is not adapted to simulate the contact interface. The present paper deals with a new constitutive contact/gripping law to simulate the gripping effect. A parameter identification procedure, based on experimental results as well as on a finite element/neural network approach, is presented. It is demonstrated that all parameters have been selected in a satisfactory way and that the proposed constitutive law is well adapted to simulate the wedge gripping effect taking place in a mechanical anchorage device.

Mechanical Behavior of Anchorage Zones in Prestressed Concrete Members with Single and Closely-Spaced Anchorages (단일텐던 및 복수텐던이 설치된 프리스트레스트 콘크리트 부재의 정착부 거동 연구)

  • Oh, Byung Hwan;Lim, Dong Hwan;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1329-1339
    • /
    • 1994
  • The purpose of present study is to explore the mechanical behavior of anchorage zones in prestressed concrete members with single and closely-spaced multiple tendon anchorages. The cracking loads and local stress distributions at these anchorage zones are studied. To this end, a series of experiments have been conducted. From this study, it is found that the failure of anchorage zones of the closely-spaced multiple tendon members is initiated by cracking along the tendon path and that the tensile stresses arising in the vicinity of anchorage zone of the first tendon are reduced due to additional compression of the second tendon. This results in the increase of cracking capacity of the member. The effects of multiple tendons are presented in the form of strain distribution and cracking load comparisons.

  • PDF

Ultimate Behavior of Steel Beam Strengthened with External Tendonand Cylindrical Anchorage (원통형 정착구를 사용하고 외부 긴장재로 보강된 강재보의 극한거동)

  • Choe, Dong-Ho;Jeong, Sang-Hwan;Jung, Jae-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • This paper examines experimentally the ultimate behavior of I-type steel beam strengthened with external tendon and cylindrical anchorage and analyzes the strengthening effect on the parameters such as initial tendon force, eccentricity, number of strands, and strand areas. The experiment demonstrated that increasing the number of strands, strand areas and eccentricity is more effective than increasing initial tendon force. The proposed cylindrical anchorage system has advantages in applying these parameters. The results showed that the cylindrical anchorage system is efficient and applicable to strengthen steel beam.

Numerical study of mono-strand anchorage mechanism under service load

  • Marceau, D.;Fafard, M.;Bastien, J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.475-491
    • /
    • 2004
  • Anchorage devices play an important role in post-tensioned bridge structures since they must sustain heavy loads in order to permit the transfer of the prestressing force to the structure. In external prestressing, the situation is even more critical since the anchorage mechanisms, with the deviators, are the only links between the structure and the tendons throughout the service life of the structure. The behaviour of anchorage devise may be studied by using the finite element method. To do so, each component of the anchorage must be adequately represented in order to approximate the anchor mechanism as accurately as possible. In particular, the modelling of the jaw/tendon device may be carried out using the real geometry of these two components with an appropriate constitutive contact law or by replacing these components by a single equivalent. This paper presents the numerical study of a mono-strand anchorage device. The results of a comparison between two different representations of the jaw/tendon device, either as two distinct components or as a single equivalent, will be examined. In the double-component setup, the influence of the wedge configuration composing the jaw, and the influence of lubrication of the anchor, will be assessed.