Browse > Article
http://dx.doi.org/10.12989/sss.2017.20.2.181

Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique  

Huynh, Thanh-Canh (Department of Ocean Engineering, Pukyong National University)
Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
Publication Information
Smart Structures and Systems / v.20, no.2, 2017 , pp. 181-195 More about this Journal
Abstract
In this study, the severity of damage in tendon anchorage caused by the loss of tendon forces is quantitatively identified by using the PZT interface-based impedance monitoring technique. Firstly, a 2-DOF impedance model is newly designed to represent coupled dynamic responses of PZT interface-host structure. Secondly, the 2-DOF impedance model is adopted for the tendon anchorage system. A prototype of PZT interface is designed for the impedance monitoring. Then impedance signatures are experimentally measured from a laboratory-scale tendon anchorage structure with various tendon forces. Finally, damage severities of the tendon anchorage induced by the variation of tendon forces are quantitatively identified from the phase-by-phase model updating process, from which the change in impedance signatures is correlated to the change in structural properties.
Keywords
damage identification; tendon anchorage; PZT interface; impedance monitoring; tendon force; 2-DOF impedance model;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Huynh, T.C., Nguyen, T.C., Choi, S.H. and Kim, J.T. (2016a), "Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation", Proceedings of SPIE, 9799, 1-6.
2 Huynh, T.C., Park, J.H. and Kim, J.T. (2016b), "Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring", Measurement, 88, 385-401.   DOI
3 Huynh, T.C., Park, Y.H., Park, J.H. and Kim, J.T. (2015a), "Feasibility verification of mountable PZT-interface for impedance monitoring in tendon-anchorage", J. Shock Vib,, 2015, 1-11.
4 Johnson, K.L. (1985), Contact mechanics, Cambridge University Press, Cambridge.
5 Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct. Monit. Maint., 1(1), 47-67.   DOI
6 Kim, J.T., Na, W.B., Park, J.H. and Hong, D.S. (2006), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceeding of SPIE, San Diego, USA.
7 Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128.   DOI
8 Koh, Y.L., Chiu, W.K., Rajic, N. and Galea, S.C. (2003), "Detection of disbond growth in a cyclically loaded bonded composite repair patch using surface-mounted piezoceramic elements", Struct. Health Monit., 2(4), 327-339.   DOI
9 Koo, K.Y, Park, S.H., Lee, J.J. and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intel. Mat. Syst.Str., 20(4), 367-377.   DOI
10 Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Review on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45.   DOI
11 Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material - Determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5, 12-20.   DOI
12 Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186.   DOI
13 Lim, H.J., Kim, M.K., Sohn, H. and Park, C.Y. (2011), "Impedance-based damage detection under varying temperature and loading conditions", NDT&E Int., 44(8), 740-750.   DOI
14 Lopes, V., Park, G., Cudney, H.H. and Inman, D.J. (2000), "Impedance-based structural health monitoring with artificial neural networks", J. Intel. Mat. Syst. Str., 11(3), 206-214.   DOI
15 Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 1-10.
16 Min, J., Park, S., Yun, C.B., Lee, C.G. and Lee, G. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity', Eng. Struct., 39, 210-220.   DOI
17 Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504.   DOI
18 Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng. - ASCE, 136(12), 1563-1573.   DOI
19 Park, G., Cudney, H.H. and Inman, D.J. (2001), "Feasibility of using impedance-based damage assessment for pipeline structures", Earthq. Eng. Struct. D., 30(10), 1463-1474.   DOI
20 Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech. - ASCE, 138(2), 175-183.   DOI
21 Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006), "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", J. Vib. Acoust., 128(4), 469-476.   DOI
22 Park, G., Sohn, H., Farrar, C. and Inman, D. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-463.   DOI
23 Park, J.H., Huynh, T.C. and Kim, J.T. (2015), "Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder", Smart Struct. Syst., 15(4), 1159-1175.   DOI
24 Park, S., Park, G., Yun, C.B. and Farrar, C.R. (2009), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", Struct. Health Monit., 8(1), 71-82.   DOI
25 Park, S., Yun, C.B., Roh, Y. and Lee, J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353.   DOI
26 Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2004), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13(1), 20-29.   DOI
27 Shen, D. (2009), "Piezoelectric energy harvesting devices for low frequency vibration applications", Ph.D. Thesis, Department of Materials Engineering, Auburn University, Alabama.
28 Sun, F.P., Chaudhry Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mat. Syst. Str., 6(1), 134-139.   DOI
29 Soh, C.K., Tseng, K.K., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9(4), 533-542.   DOI
30 Stubbs, N. and Osegueda, R. (1990), "Global non-destructive damage evaluation in solids", Int. J. Anal. Exp. Modal Anal., 5(2), 67-79.
31 Xu, Y.G. and Liu, G.R. (2002), "A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches", J. Intel. Mat. Syst. Str., 13(6), 389-396.   DOI
32 Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intel. Mat. Syst. Str., 12(10), 709-718.   DOI
33 COMSOL Inc., http://www.comsol.com
34 Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative impedance-based health monitoring of civil infrastructures", Smart Mater. Struct., 7(5), 599-605.   DOI
35 Bhalla, S. and Soh, C.K. (2004), "Electromechanical impedance modeling for adhesively bonded piezo-transducers", J. Intel. Mat. Syst. Str., 15(12), 955-972.   DOI
36 Chaudhry, Z., Lalande, F., Ganino, A., Rogers, C. and Chung, J. (1995), "Monitoring the integrity of composite patch structural repair via piezoelectric actuators/sensors", Proceedings of the 36th Structures, Structural Dynamics and Materials Conference, New Orleans, LA, USA.
37 Giurgiutiu, V. and Zagrai, A. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monit., 4(2), 99-118.   DOI
38 Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105.   DOI
39 Efunda, Inc. (2010), http://www.efunda.com
40 Giurgiutiu, V. (2014), Structural health monitoring with piezoelectric wafer active sensors, 2nd Ed., Academic Press
41 Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestress-force estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 16(6), 997-1012.
42 Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Probl. Eng., 2014, 1-11.
43 Huynh, T.C. and Kim, J.T. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders", Smart Struct. Syst., 17(6), 881-901.   DOI
44 Huynh, T.C. and Kim, J.T. (2017), "FOS-Based prestress force monitoring and temperature effect estimation in unbonded tendons of PSC girders", J. Aerospace Eng. - ASCE, 30(2), 1-14.
45 Huynh, T.C., Lee, S.Y., Kim, J.T., Park, W.S. and Han, S.H. (2013), "Simplified planar model for damage estimation of interlocked caisson system", Smart Struct. Syst., 12(3-4), 441-463.   DOI
46 Huynh, T.C., Lee, K.S. and Kim, J.T. (2015b), "Local dynamic characteristics of PZT impedance interface on tendon-anchorage under prestress force variation", Smart Struct. Syst., 15(2), 375-393.   DOI